Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is $\ensuremath{\mathbb{C}}$ The Owner Societies 2012

Contribution of high-energy conformations to NMR chemical shifts, a DFT-BOMD study

Annick Goursot^a, Tzonka Mineva^a, Jose Manuel Vasquez-Perez^b, Patrizia Calaminici^b, Andreas M. Köster^b, Dennis R. Salahub^c

^aICGM, UMR 5253 CNRS, Ecole de chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier, Cédex 5, France
^bDepartamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740 México D.F. 07000 México
^cDepartment of Chemistry, Institute for Biocomplexity and Informatics and Institute for Sustainable Energy, Environment and Economy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Supplementary Information

Content

SI1- Basis set effects on calculated NMR isotropic shieldings	2
SI2. Relative energies of glycerol isomer types	2
SI3. Transition states activation energies	3
SI4. Cartesian coordinates of glycerol transition state structures	3

SI1- Basis set effects on calculated NMR isotropic shieldings

Table SI1- NMR isotropic ¹³C shielding of the optimized conformers using aug-cc-pVDZ and aug-cc-pVTZ (PW91 method); the corresponding TMS σ_{ref} values are 187.6 and 179.4 ppm, respectively.

	Properties	$A(\alpha\alpha)$	Β (αγ)	C (αβ)	D (βγ)	Ε (ββ)	F (γγ)
	σ_1	107.4	108.9	105.0	111.4	101.9	102.1
	σ_2	98.3	99.0	94.6	99.0	100.7	100.6
	σ_{2}	109.0	109.3	107.4	110.7	100.4	104.5
aug-cc-pVTZ	0,						
	G.=G.	9.1	9.9	10.4	12.4	1.2	1.5
	$0_1 - 0_2$	10.7	10.3	12.8	11.7	-0.3	3.9
	03-02						
	σ_1	120.1	121.4	117.4	123.6	112.1	112.2
	σ_2	109.7	110.5	106.2	110.5	114.3	114.6
	σ ²	121.2	121.2	119.6	122.4	112.8	116.9
aug-cc-pVDZ	03						
	G - G	10.5	10.9	11.2	13.1	-2.2	-2.4
	$0_1 - 0_2$	10.7	10.7	13.4	11.9	-1.5	-2.3
	03-02						

SI2. Relative energies of glycerol isomer types

Table SI2: Relative energies ΔE and free energies (ΔG) (kcal/mol) of the six most stable glycerol conformers obtained with DZVP and TZVP basis sets, respectively. Corrections for zero point energy and thermal population are included in ΔE .

Isomer	ΔE	ΔG	ΔΕ	ΔG
	(DZVP)	(DZVP)	(TZVP)	(TZVP)
Isomer type A ($\alpha\alpha$)	2.4	0.9	0.9	0.0
Isomer type B ($\alpha\gamma$)	1.9	1.0	1.1	0.7
Isomer type C ($\alpha\beta$)	4.3	2.7	3.3	2.2
Isomer type D ($\beta\gamma$)	3.5	1.9	2.2	1.4
Isomer type E ($\beta\beta$)	4.5	3.2	4.1	3.3
Isomer type F (γγ)	0.0	0.0	0.0	0.5

SI3. Transition states activation energies

Table SI3: Low-lying transition states activation energy (ΔE^*) calculated with DZVP and TZVP basis sets. All values are given in kcal/mol.

Interchange reaction	ΔE^* (DZVP)	$\Delta E^* (TZVP)$
$F(\gamma\gamma) \longrightarrow D(\beta\gamma)$	1.2	1.8

$D(\beta\gamma) > C(\alpha\beta)$	6.0	5.6
B (αγ)> C (αβ)	3.6	2.4
$A(\alpha\alpha) \longrightarrow C(\alpha\beta)$	3.6	2.4
$A(\alpha\alpha) \longrightarrow B(\alpha\gamma)$	3.7	3.9
$F(\gamma\gamma) \longrightarrow B(\alpha\gamma)$	3.7	3.7

SI4. Cartesian coordinates of glycerol transition state structures

Below are listed the Cartesian coordinates (in Å) of the transition state (TS) structures (see main text) The corresponding TS structures are given in Figure 2.

1) F --> D

С	0.642807	-0.835624	0.755625
0	0.639237	-1.581366	-0.499399
С	0.375752	0.665432	0.497444
Η	-0.309217	-1.612712	-0.765748
Ο	1.389002	1.210741	-0.390648
Η	1.544845	0.504723	-1.060580
Η	1.663101	-0.944839	1.172395
Η	0.503118	1.216660	1.451857
Η	-0.112213	-1.245021	1.460053
С	-1.061328	0.951492	-0.072071
Ο	-1.872429	-0.275564	-0.077228
Η	-2.756178	-0.038966	-0.426497
Η	-0.934424	1.341055	-1.102908
Η	-1.562621	1.726030	0.552112
2)]	F> B		
С	-1.459959	-0.188484	-0.603713
0	-1.761706	-0.602709	0.764766
С	-0.041360	0.424902	-0.696554
Η	-1.206495	-1.385496	0.974710
0	0.115342	1.470645	0.304157
Η	-0.435102	1.176555	1.068871
Η	-2.219295	0.582348	-0.839272
Η	0.063334	0.933964	-1.675296
Η	-1.555327	-1.037942	-1.316851
С	1.099610	-0.678214	-0.564236
0	2.024088	-0.433314	0.514466
Η	1.852650	0.497550	0.784623
Η	0.638444	-1.674654	-0.385169
Η	1.652942	-0.726627	-1.527196

3) A --> B

С	1.218473	-0.717880	0.278230
0	2.474525	-0.033957	0.065985

С	0.058434	-0.037504	-0.478075
Η	2.284899	0.916923	0.222264
0	-0.008828	1.343516	-0.026858
Η	-0.962448	1.511447	0.143572
С	-1.301961	-0.812823	-0.240437
0	-2.364135	0.060932	0.256108
Η	-2.448675	-0.087984	1.220346
Η	1.362789	-1.753810	-0.094360
Η	-1.666959	-1.223243	-1.201286
Η	-1.133343	-1.650238	0.468233
Η	0.958559	-0.749905	1.366342
Η	0.291597	-0.030155	-1.564896

4) B --> C

С	1.057095	-0.776602	-0.377072
0	2.328390	-0.580057	0.280710
С	-0.024491	0.187430	0.158706
Η	2.415311	0.393459	0.388452
0	0.459855	1.572636	0.056677
Η	0.508178	1.798406	-0.898082
Η	-0.149682	0.027008	1.246526
Η	0.752279	-1.826068	-0.183635
С	-1.411967	-0.034614	-0.530600
0	-2.440608	-0.527439	0.365550
Η	-2.630821	0.178405	1.018316
Η	-1.329140	-0.813737	-1.315884
Н	-1.718121	0.924430	-1.005222
Η	1.154455	-0.631965	-1.483465

5) A --> C

С	1.059082	-0.776830	-0.376027
0	2.329840	-0.576587	0.281698
С	-0.024530	0.185814	0.158225
Η	2.414254	0.397246	0.388720
0	0.457311	1.571835	0.054970
Η	0.505305	1.796774	-0.900003
Η	-0.150027	0.026484	1.246171
Η	0.756474	-1.826642	-0.181066
С	-1.411278	-0.039300	-0.531428
0	-2.441778	-0.524531	0.366799
Η	-2.631361	0.185863	1.014882
Η	-1.328278	-0.823771	-1.311371
Η	-1.715799	0.916896	-1.012971
Η	1.156412	-0.633604	-1.482627

6) D --> C

C 0.000000 0.000000 0.000000

0	0.000000	0.000000	1.446427
С	1.475026	0.000000	-0.466963
Η	-0.728590	-0.613984	1.696313
0	1.585267	0.004137	-1.921027
Η	1.303433	0.889623	-2.231941
Η	1.967127	-0.933713	-0.125131
С	-0.797133	-1.233592	-0.602949
0	-1.526597	-1.977644	0.424192
Η	-0.984945	-2.757891	0.663496
Η	-1.563818	-0.870205	-1.314410
Η	-0.090713	-1.890667	-1.147639
Η	2.001558	0.866828	-0.007735
Η	-0.488841	0.935679	-0.364338