Support Information

A new scheme for significant enhancement of the second order

nonlinear optical response from molecule to ordered aggregates

Weiqi Li¹⁾, Xin Zhou²⁾, Wei Quan Tian^{2,a)}, and Xiudong Sun^{1,a)}

¹ Department of Physics, Harbin Institute of Technology, Harbin 150001, China

² State Key Laboratory of Urban Water Resource and Environment, Institute of Theoretical and Simulational Chemistry, Academy of Fundamental and interdisciplinary sciences, Harbin Institute of Technology, Harbin, 150001, China ^{a)} Email: tianwq@hit.edu.cn; tccliweiqi@hit.edu.cn

The static β_0 , dipole moment, and the electronic spectra of the aggregates of corannulene, sumanene and $C_{36}H_{12}$.

Major absorption peaks of buckybowl aggregates predicted by ZINDO

Table S1. Dipole moment (μ in debye), NLO Response (β in 10^{-30} cm⁵ esu⁻¹), and the strongest absorption peak of electronic spectra of (Corannulene)₁₋₁₀, (Sumanene)₁₋₁₀, and (C₃₆H₁₂)₁₋₅.

n	(Corannulene) _n				(Sumanene) _n				$(C_{36}H_{12})_n$			
	μ	β	β_{Per}	λ	μ	β	β_{Per}	λ	μ	β	β_{Per}	λ
1	-2.95	-7.98	-7.98	317.2	-3.05	-7.82	-7.82	380.5	-5.40	-36.2	-36.2	422.4
2	-5.84	-27.27	-13.64	287.2	-5.96	-28.05	-14.03	3848	-11.89	-170.52	-85.26	450.3
3	-8.74	-57.25	-19.08	303.8	-8.89	-60.23	-20.07	386.9	-17.75	-364.76	-121.59	444.4
4	-11.64	-94.57	-23.64	293.5	-11.80	-103.99	-26.00	386.8	-23.60	-639.83	-159.96	443.2
5	-14.54	-147.64	-29.53	304.7	-14.73	-159.71	-31.94	386.3	-29.46	-955.72	-191.14	436.7
6	-17.44	-199.03	-33.17	335.2	-17.64	-218.50	-36.42	365.7				
7	-20.34	-265.29	-37.90	337.5	-20.57	-270.18	-38.60	361.4				
8	-23.24	-350.41	-43.80	319.6	-23.47	-369.15	-46.14	365.9				
9	-26.13	-436.22	-48.67	335.9	-26.41	-451.71	-50.19	361.0				
10	-29.03	-526.74	-52.60	317.8	-29.32	-563.30	-56.30	359.6				

Molecule	Transition	λ	μ_x	μ_y	μ_z	$\Delta \mu$
	$S_1> S_{10}$	255.1	-7.80	-0.36	-0.02	1.12
$C_{20}H_{10}$	S ₁ >S ₁₁	254.0	0.36	-7.79	-0.00	1.12
	S ₁ >S ₁₆	237.3	-0.67	-0.07	2.02	1.87
	S ₁ >S ₉	436.1	0.00	-0.00	-1.66	1.00
$C_{30}H_{10}$	S ₁ >S ₂₄	284.1	8.12	1.22	0.00	0.77
	$S_1> S_{25}$	284.1	1.22	-8.13	0.00	0.77
	$S_1> S_{43}$	239.0	0.00	0.00	3.37	1.35
	S ₁ >S ₁₁	389.3	0.00	0.00	-1.32	1.66
$C_{40}H_{10}$	S ₁ >S ₂₃	329.9	-3.91	7.11	0.00	1.74
	S ₁ >S ₂₄	329.9	-7.11	-3.91	0.00	1.74
	S1>S80	227.4	0.00	0.00	4.46	5.75
	S ₁ >S ₂	375.0	0.00	0.00	-0.49	0.61
$C_{21}H_{12}$	S ₁ >S ₆	297.6	2.56	-5.87	0.00	0.96
	S ₁ >S ₇	297.6	-5.87	-2.56	0.00	0.96
	S ₁ >S ₂₉	198.6	0.00	0.00	2.46	1.12
	S ₁ >S ₉	369.1	0.01	0.00	-2.13	3.93
$C_{36}H_{12}$	$S_1> S_{21}$	289.4	-0.92	8.22	-0.01	1.12
	S ₁ >S ₂₂	289.4	-8.24	-0.94	0.01	1.12
	S ₁ >S ₇₇	202.6	-0.03	-0.02	4.75	4.16
	S ₁ >S ₈	408.0	-0.00	0.00	1.61	4.17
$C_{39}H_{12}$	S1>S ₁₅	349.6	-3.95	-1.74	0.00	1.02
	S ₁ >S ₁₆	349.6	-1.74	3.95	0.00	1.02
	S1>S82	211.9	-0.01	0.02	4.59	4.74

Table S2. Major absorption peaks (absorption wavelength λ in nm, transition dipole moments μ and dipole moment change $\Delta \mu$ in debye) predicted by ZINDO with important contributions to β_0 of buckybowls.

	Transition	λ	f	μ_x	μ_y	μ_z
(Sumanene) _n						
Monomer	$S_1 -> S_2$ (intra-CT)	375.0	0.003	0.00	0.00	-0.49
	S ₁ >S ₆ (intra-CT)	297.6	0.648	2.56	-5.87	0.00
	$S_1 -> S_7$ (intra-CT)	297.6	0.648	-5.87	-2.56	0.00
	S ₁ S ₄₀ (intra-CT)	184.7	0.008	0.00	0.00	0.56
Dimer	$S_1 - S_2$ (inter-CT)	383.2	0.011	0.00	0.00	0.95
	$S_1 -> S_{12}$ (intra-CT)	294.1	0.878	-3.38	6.59	0.00
	S ₁ >S ₁₃ (intra-CT)	294.1	0.878	-6.59	-3.37	0.00
	S ₁ >S ₈₉ (inter-CT)	199.4	0.151	0.00	0.00	2.53
Tetramer	S ₁ >S ₂ (inter-CT)	386.6	0.022	0.00	0.00	1.33
	S ₁ >S ₂₄ (intra-CT)	289.7	1.221	-6.83	5.34	0.00
	S ₁ >S ₂₅ (intra-CT)	289.7	1.221	-5.34	-6.83	0.00
	S ₁ >S ₂₂₆ (inter-CT)	199.9	0.243	0.00	0.00	3.21
Hexamer	S ₁ >S ₂ (inter-CT)	373.5	0.043	0.00	0.00	1.85
	S ₁ >S ₁₁₈ (intra-CT)	247.9	1.699	9.30	-1.73	0.00
	S ₁ >S ₁₁₉ (intra-CT)	247.9	1.699	1.73	9.30	0.00
	S ₁ >S ₃₁₀ (inter-CT)	204.8	0.584	0.00	0.00	5.04
Octamer	S ₁ >S ₂ (inter-CT)	365.9	0.052	0.00	0.00	2.00
	S ₁ >S ₁₆₁ (intra-CT)	247.0	2.313	10.52	3.27	0.00
	S ₁ >S ₁₆₂ (intra-CT)	247.0	2.313	3.271	-10.52	0.00
	$S_{1} - > S_{468}$ (inter-CT)	199.7	1.420	0.00	0.00	7.76

Table S3. Major absorption peaks (absorption wavelength λ in nm, transition dipole moments μ and dipole moment change $\Delta \mu$ in debye) of (Sumanene)_n (n=1,2,4,6,8) predicted by ZINDO with important contributions to β_0 of Sumanene aggregates. *f* is oscillator strength.

Note: inter-CT represents intermolecular charge transfer transition; intra-CT represents intramolecular charge transfer transition.