Electronic supplementary information for

Density Functional Theory Study on the Surface Modification of Chlorine-Passivated Silicon Nanocrystals

Rong Wang, Xiaodong Pi*, and Deren Yang

State Key Laboratory of Silicon Materials and Department of Materials Science and

Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

*Corresponding author E-Mail: xdpi@zju.edu.cn

Name	molecular formula	structural formula	
butyltrihydroxylsilane	(HO) ₃ SiC ₄ H ₉	HO SI OH	
n-butyltrichlorosilane	C4H9Cl3Si		
butyllithium	C ₄ H ₉ Li	Li	
1-butanol	(HO)C ₄ H ₉	но	
butylamine	(NH ₂)C ₄ H ₉	H2N	
aniline	(NH ₂)C ₆ H ₅		
diphenylamine	(NH)C ₁₂ H ₁₀	NH NH	

Table S1. Names and formulae of main organic molecules concerned in this work.

Formation energy of a surface-modified Si NC

When the surface of a 0.8 nm fully Cl-passivated Si NC (Si₃₀Cl₃₉) is modified, all types of surface Si atoms (Si^{*A*}, Si^{*B*} and Si^{*C*}) are likely involved to form bonds with ligands. In the point of view of thermodynamics, the probability of the involvement of Si^{*A*}, Si^{*B*} or Si^{*C*} is related to the formation energy (E_f) of the surface-modified Si NC. E_f is obtained by using

$$E_{f} = E(Si_{x}Cl_{y}C_{z}H_{l}N_{m}O_{n}) - x\mu(Si) - y\mu(Cl) - z\mu(C) - l\mu(H) - m\mu(N) - n\mu(O)$$

Where $E(Si_xCl_yC_zH_lN_mO_n)$ is the total energy of the surface-modifed Si NC at ground state at 0 K. *x*, *y*, *z*, *l*, *m* and *n* are the numbers of Si, Cl, C, H, N and O atoms, respectively. μ_{Si} , μ_{Cl} , μ_{C} , μ_{H} , μ_{N} , and μ_{O} are the chemical potentials of Si, Cl, C, H, N and O respectively. The values of E_f are obtained by setting μ_{Si} , μ_{Cl} , μ_{C} , μ_{H} , μ_{N} , and μ_{O} equal to the total energy per atom of bulk Si (-7878.47 eV), the total energy per atom of chlorine gas (-12522.79 eV), the total energy per atom of diamond (-1036.88 eV), the total energy per atom of hydrogen gas (-15.88 eV), the total energy per atom of nitrogen gas (-1490.63 eV) and the total energy per atom of oxygen gas (-2046.11eV) at 0 K, respectively. Table S2 shows the E_f of the surface-modifed Si NC with a Si⁴, Si^B or Si^C atom linked to a ligand, which is derived from a (HO)₃-Si-C₄H₉, C₄H₉Li, (OH)-C₄H₉ or (H₂N)-C₄H₉ molecule. **Table S2.** Formation energies of silanized, alkylated, alkoxylated or aminized Si NCs. Butyltrihydroxylsilane (hydrolyzed n-butyltrichlorosilane), butyllithium, 1-butanol and butylamine are representatively used for the silanization, alkylation, alkoxylation and aminization of Si NCs, respectively. All types of surface Si atoms (Si^{*A*}, Si^{*B*} and Si^{*C*}) are likely involved to form bonds with ligands. There exists one ligand at the surface of each Si NC. The unit of formation energy is eV.

	silanization	alkylation	alkoxylation	aminization
Si ^A	-222.23	-215.84	-209.97	-207.94
Si ^B	-222.46	-215.80	-210.30	-208.27
Si ^C	-222.59	-215.90	-210.35	-208.28