Electronic Supplementary Information

Unravelling molecular mechanisms in the fluorescence spectra of Doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy

Pascale Changenet-Barret,*^a Thomas Gustavsson,^a Dimitra Markovitsi,^a Ilse Manet,*^b and Sandra Monti^b

^a Laboratoire Francis Perrin, CEA/DSM/IRAMIS/SPAM – CNRS URA 2453, 91191 Gif-sur-Yvette, France. Fax: + 33 169 088 707; Tel: +33 169 081 940; E-mail: pascale.changenet-barret@cea.fr

^b Istituto per la Sintesi Organica e la Fotoreattività, CNR, via P. Gobetti 101, 40129 Bologna, Italy. Fax: +39 051 639 9844; Tel: +30 051 639 9808; E-mail: ilse.manet@isof.cnr.it

Fig. S1. Time-resolved shift of the fluorescence band of DOX 380 μ M DOX in 10 mM Tris buffer at pH 7.4, with 1 mM EDTA and 50 mM NaCl, after excitation at 400 nm. The kinetics trace was fitted to an exponential function with a time constant of 0.24 \pm 0.05 ps and an amplitude of 221 \pm 42 cm⁻¹.

Fig. S2 Typical total fluorescence decay of DOX (800 μ M) in D₂O, at 550, 600 and 650 nm, after excitation at 400 nm. The fits with a three-exponential function convoluted with a Gaussian representing the instrumental response function (FWHM 280 fs) are represented by the solid lines.

800 µM DOX / D ₂ O	<i>a</i> ₁	a_2	a_3
	$ au_l$	$ au_2$	$ au_3$
550 nm	0.51±0.02	0.24 ± 0.01	0.25±0.01
	433±24 fs	2.6±0.1 ps	1ns
600 nm	0.39±0.01	0.35 ± 0.01	0.26 ± 0.01
	488±31 fs	2.22±0.07 ps	1ns
650 nm	0.46 ± 0.01	0.33±0.01	0.20 ± 0.02
	721±39 fs	3.1±0.1 ps	1ns

Table SI1. Time constants and amplitudes obtained from the individual fits of the fluorescence decays measured for 800 μ M DOX in D₂O. Decays were fitted using a three-exponential function where the longest time was fixed to 1 ns.

Fig. S3 Typical total fluorescence decay of DOX (800 μ M) in H2O, at 550, 600 and 650 nm, after excitation at 400 nm. The fits with a three-exponential function convoluted with a Gaussian representing the instrumental response function (FWHM 280 fs) are represented by the solid lines.

800 µM DOX / H ₂ O	a_1 $ au_1$	$egin{array}{c} a_2 \ au_2 \ au_2 \end{array}$	a3 T3
550 nm	0.51±0.05	0.24±0.06	0.25±0.01
	198±18 fs	1.09±0.05 ps	1ns
600 nm	0.36±0.04	0.36±0.05	0.28±0.01
	362±28 fs	1.53±0.05 ps	1ns
650 nm	0.39±0.04	0.35±0.05	0.26±0.01
	523±32 fs	1.97±0.07 ps	1ns

Table SI2. Time constants and amplitudes obtained from the individual fits of the fluorescence decays measured for 800 μ M DOX in H₂O. Decays were fitted using a three-exponential function where the longest time was fixed to 1 ns.