Electronic Supporting Information (ESI)

Excimer formation of 6-(1-pyrenyl)hexyl-11(1-pyrenyl) undecanoate within ionic liquid and cosolvent modified ionic liquid mixture

Rewa Rai^{*a*} and Siddharth Pandey^{*a**}

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110016, India.

*Corresponding Author. Phone: +91-11-26596503, Fax: +91-11-26581102,

E-mail: sipandey@chemistry.iitd.ac.in

T (°C)	$\lambda_{\rm em}({\rm nm})$	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	α_1	α_2	α ₃	χ^2
				TEG				
10	378	131			1.00			4.76
	480	131			1.00			10.58
	378	114	60.6		0.99	0.01		0.99
	480	114	60.6		0.57	-0.43		2.41
	378	112	59.1	431	0.87	0.12	-0.01	1.01
	480	112	59.1	431	0.57	-0.43	0.00	1.93
30	378	100			1.00			12.16
	480	100			1.00			26.43
	378	68.4	49.2		0.90	0.10		1.02
	480	68.4	49.2		0.52	-0.48		1.30
	378	67.2	48.7	2.1	0.84	0.01	0.15	1.01
	480	67.2	48.7	2.1	0.49	-0.47	0.04	0.98
50	378	82.6			1.00			25.62
	480	82.6			1.00			46.37

Table S1. Recovered best global fitted intensity decay parameters for **1** dissolved in $[bmim][PF_6]$, TEG and their equimolar mixture at different temperatures.

T (°C)	$\lambda_{\rm em}({\rm nm})$	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	α_1	α_2	α_3	χ^2
50	378	48.4	32.9		0.37	0.63		1.00
	480	48.4	32.9		0.51	-0.49		1.30
	378	51.0	26.7	5.6	0.50	0.41	0.09	0.96
	480	51.0	26.7	5.6	0.48	-0.47	0.05	1.02
70	378	54.6			1.00			24.33
	480	54.6			1.00			35.16
	378	40.9	17.2		0.39	0.61		1.04
	480	40.9	17.2		0.52	-0.48		1.02
	378	39.4	13.8	8.5	0.44	0.52	0.03	0.94
	480	39.4	13.8	8.5	0.36	-0.48	0.16	0.89
90	378	42.0			1.00			13.90
	480	42.0			1.00			20.81
	378	36.1	8.2		0.49	0.51		1.01
	480	36.1	8.2		0.54	-0.46		1.02
	378	34.4	10.1	34.0	0.49	0.03	-0.48	0.94
	480	34.4	10.1	34.0	-0.39	-0.10	0.51	0.77

T (°C)	$\lambda_{\rm em}({\rm nm})$	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	α_1	α_2	α ₃	χ^2
				[bmim][PF ₆]			
10	378	124			1.00			1.60
	480	124			1.00			4.42
	378	115	54.2		0.99	0.01		1.10
	480	115	54.2		0.63	-0.37		3.12
	378	116	40.0	3.3	0.93	0.06	0.01	1.03
	480	116	40.0	3.3	0.34	-0.25	0.41	1.02
30	378	102			1.00			4.52
	480	102			1.00			10.14
	378	82.8	43.1		0.97	0.03		1.00
	480	82.8	43.1		0.56	-0.44		1.76
	378	84.8	35.3	2.5	0.82	0.07	0.11	0.96
	480	84.8	35.3	2.5	0.44	-0.37	0.19	1.02
50	378	81.1			1.00			11.83
	480	81.1			1.00			24.61
	378	57.5	33.1		0.87	0.13		1.02
	480	57.5	33.1		0.54	-0.46		1.49

$\lambda_{\rm em}({\rm nm})$	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	α_1	α_2	α ₃	χ^2
378	52.4	32.2	2.0	0.85	0.01	0.14	0.89
480	52.4	32.2	2.0	0.49	-0.45	0.06	0.89
378	55.1			1.00			18.16
480	55.1			1.00			31.41
378	36.1	22.9		0.75	0.25		1.00
480	36.1	22.9		0.52	-0.48		1.11
378	36.0	21.2	4.1	0.73	0.17	0.11	0.98
480	36.0	21.2	4.1	0.49	-0.47	0.04	0.91
378	40.5			1.00			21.16
480	40.5			1.00			26.99
378	27.4	13.9		0.59	0.41		1.02
480	27.4	13.9		0.53	-0.47		1.01
378	29.0	14.1	14.3	0.50	0.50	0.00	0.91
480	29.0	14.1	14.3	0.54	-0.46	0.00	0.90
	$\lambda_{em}(nm)$ 378 480 378 480 378 480 378 480 378 480 378 480 378 480 378 480 378 480	$\begin{array}{c c} \lambda_{\rm em}(\rm nm) & \tau_1(\rm ns) \\ \hline 378 & 52.4 \\ 480 & 52.4 \\ \hline 378 & 55.1 \\ 480 & 55.1 \\ 378 & 36.1 \\ 480 & 36.1 \\ 378 & 36.0 \\ 480 & 36.0 \\ \hline 480 & 36.0 \\ \hline 378 & 40.5 \\ 480 & 40.5 \\ 378 & 27.4 \\ 480 & 27.4 \\ 480 & 27.4 \\ 378 & 29.0 \\ 480 & 29.0 \\ \hline \end{array}$	$\lambda_{em}(nm)$ $\tau_1(ns)$ $\tau_2(ns)$ 37852.432.248052.432.237855.148055.137836.122.948036.122.937836.021.248036.021.237840.537848040.537837827.413.948027.413.937829.014.148029.014.1	$\lambda_{em}(nm)$ $\tau_1(ns)$ $\tau_2(ns)$ $\tau_3(ns)$ 37852.432.22.048052.432.22.037855.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

T (°C)	$\lambda_{\rm em}({\rm nm})$	$\tau_1(ns)$	$\tau_2(ns)$	$ au_3(\mathrm{ns})$	α ₁	α_2	α ₃	χ^2
			Equimolar	mixture ([bmin	n][PF ₆] + TEG	;)		
10	378	138			1.00			2.65
	480	138			1.00			7.77
	378	118	55.4		0.99	0.01		1.06
	480	118	55.4		0.51	-0.49		2.90
	378	120	43.0	3.1	0.93	0.02	0.05	1.01
	480	120	43.0	3.1	0.36	-0.29	0.35	1.01
30	378	121			1.00			11.51
	480	121			1.00			30.80
	378	78.7	50.0		0.99	0.01		1.04
	480	78.7	50.0		0.53	-0.47		1.89
	378	80.1	40.2	2.2	0.87	0.05	0.08	0.90
	480	80.1	40.2	2.2	0.46	-0.42	0.11	0.97
50	378	79.8			1.00			23.34
	480	79.8			1.00			45.29
	378	49.5	35.2		0.76	0.24		1.04
	480	49.5	35.2		0.51	-0.49		1.25

T (°C)	$\lambda_{\rm em}({\rm nm})$	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	α_1	α_2	α ₃	χ^2
50	378	46.6	32.5	2.8	0.90	0.01	0.09	0.91
	480	46.6	32.5	2.8	0.50	-0.48	0.03	0.91
70	378	55.9			1.00			30.38
	480	55.9			1.00			42.77
	378	33.9	21.2		0.55	0.45		0.98
	480	33.9	21.2		0.52	-0.48		1.09
	378	35.8	17.2	6.6	0.56	0.39	0.05	0.89
	480	35.8	17.2	6.6	0.45	-0.47	0.08	0.94
90	378 480	37.7 37.7			1.00 1.00			18.98 25.88
	378	28.1	11.0		0.49	0.51		0.99
	480	28.1	11.0		0.53	-0.47		1.00
	378	24.1	14.1	14.0	0.01	0.50	0.50	0.69
	480	24.1	14.1	14.0	0.17	-0.49	0.33	0.76

T (°C)	$ au_1$ (ns)	$ au_2$ (ns)	А
	[b	omim][PF ₆]	
10	114 (± 2)	61.0 (± 0.4)	0.02
30	83.5 (± 1.3)	44.2 (± 2.2)	0.06
50	58.1 (± 1.5)	32.6 (± 1.0)	0.17
70	37.7 (± 3.2)	$23.2 (\pm 0.6)$	0.40
90	27.7 (± 0.7)	13.7 (± 0.4)	0.69
	Equimolar Mixt	ure ([bmim][PF ₆] + TEG)	
10	120 (± 4)	56.8 (± 1.8)	0.01
30	79.2 (± 1.0)	49.3 (± 1.4)	0.03
50	50.9 (± 1.4)	34.2 (± 2.0)	0.30
70	34.4 (± 1.0)	$21.0 (\pm 0.5)$	0.86
90	28.1 (± 1.0)	11.3 (± 0.5)	0.99
		TEG	
10	111 (, 7)	(10(+0.9))	0.04
10	$111(\pm 7)$	$61.0 (\pm 0.8)$	0.04
30 50	$69.2 (\pm 2.0)$	$48.5 (\pm 1.5)$	0.17
50 70	$49.9 (\pm 3.0)$	$31.2 (\pm 1.8)$	1.46
/0	$41.2 (\pm 1.3)$	$1/.0(\pm 0.4)$	1.00
90	33.7 (± 1.0)	8.4 (± 0.3)	1.11

Table S2. Decay parameters (τ_1 , τ_2 and A = α_{12}/α_{11}) for **1** dissolved in [bmim][PF₆], TEG and their equimolar mixture at different temperatures based on Scheme 2.

Table S3. Flu	orescence lif	tetimes (τ_0) and	excited	-state	intens	ity decay 1	ates ($k_{\rm M}$ =	= 1/	τ_0) for 1-
methylpyrene	dissolved in	n [bmim][PF ₆]	, TEG	and	their	equimolar	mixture	at	different
temperatures.									

T (°C)	τ_0 (ns)	$k_{\rm M} (10^6, {\rm s}^{-1})$
	[bmim][PF ₆]	
10	137 (± 2)	7.3 (± 0.1)
30	131 (± 2)	$7.7 (\pm 0.1)$
50	107 (± 1)	9.3 (± 0.1)
70	$100 (\pm 1)$	10.1 (±0.1)
90	82 (± 3)	12.2 (±0.2)
1	Equimolar mixture ([bmim][PF ₆] + T	EG)
10	139 (± 4)	7.2 (± 0.2)
30	$127(\pm 8)$	$7.9(\pm 0.5)$
50	$110(\pm 8)$	9.1 (± 0.7)
70	$98(\pm 1)$	$10.2 (\pm 0.1)$
90	83 (± 2)	12.1 (±0.3)
	TEG	
10	$140(\pm 1)$	7.2 (± 0.1)
30	$131(\pm 3)$	$7.7 (\pm 0.2)$
50	$124(\pm 1)$	$8.1 (\pm 0.1)$
70	$135(\pm 2)$	$7.4 (\pm 0.1)$
90	$130(\pm 1)$	$7.7 (\pm 0.1)$

Figure S1. Normalized steady-state emission wavelength-dependent excitation spectra of **1** dissolved in [bmim][PF₆] (top two panels), equimolar mixture (middle two panels) and TEG (bottom two panels) when emission is monitored at 378 nm (—) and 480 nm (– –) at 10 °C (left panels) and 90 °C (right panels).