Supplementary Information

Hollow 0.3Li₂MnO₃•0.7LiNi_{0.5}Mn_{0.5}O₂ microspheres as a high-performance cathode material for lithium-ion batteries

Yan Jiang, Ze Yang, Wei Luo, Xianluo Hu* and Yunhui Huang*

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

Fax: +86 -27-87558241; Tel: +86 -27-87558241

E-mail: huxl@mail.hust.edu.cn, huangyh@mail.hust.edu.cn.

Fig.S1 A representative XRD pattern of precursor $MnCO_3$ prepared by co-precipitation. The diffraction peaks could be well indexed to a pure rhombohedral phase of $MnCO_3$ (JCPDS No. 44-1472).

Fig.S2 A representative XRD pattern of the intermediate product of porous MnO_2 prepared by heating $MnCO_3$ at 400 °C for 5 h in air. The diffraction peaks could be well indexed to a pure tetragonal phase of MnO_2 (JCPDS No. 01-0799).

Fig. S3 EDX spectrum of the $0.3Li_2MnO_3 \cdot 0.7LiNi_{0.5}Mn_{0.5}O_2$ product, where the signal of C is generated from the sample holder.

Fig. S4 XRD patterns for the $0.3Li_2MnO_3 \cdot 0.7LiNi_{0.5}Mn_{0.5}O_2$ products prepared by a sol-gel method (nanoparticles) and a solid state reaction (bulk), respectively.

Fig. S5 FESEM images for the electrodes before cycling (a) and after 200 discharge/charge cycles at 55 °C at the current densities of (b) 50 (c) 100 (d) 200, and (e) 500 mA g^{-1} , respectively. The smaller particles are acetylene black.