$\label{eq:supplementary Information for} Supplementary Information for $$ Prediction of $(TiO_2)_x(Cu_2O)_y$ Alloys for Photoelectrochemical Water Splitting $$ The second seco$

Heng-Rui Liu^a, Ji-Hui Yang^a, Yue-Yu Zhang^a, Shiyou Chen^b, Aron Walsh^c, Hongjun Xiang^{*a}, Xingao Gong^{*a}, and Su-Huai Wei^{*d}

^a Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, P. R. China

^b Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, P. R. China

^c Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

^d National Renewable Energy Laboratory, Golden, Colorado 80401, USA

I. Partial density of states (PDOS) of $(TiO_2)_x(Cu_2O)_y$ alloys by the PBE functional

The energy levels of the VBMs are set to zero. The red lines represent the p states, while the blue ones and the green ones represent the s states and the d states, respectively.

II. Band structure of selected $(TiO_2)_x(Cu_2O)_y$ alloys from the HSE06 calculations

The VBMs are set to zero. The fractional coordinates of the k-points are as follows: Γ (0.0, 0.0, 0.0), A (0.4444, 0.4444, 0.5), B (0.5, 0.0, 0.5), C (-0.3333, 0.1333, 0.06667), D (0.0, 0.4667, 0.0), M (0.5, 0.5, 0.5), X (-0.2333, 0.35, 0.0).