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1. DFT Calculations 

 

1.1. Gas-phase Correction: The DFT binding energies of nitrate are initially calculated with 

respect to hydrogen and nitric acid in gas phase, as shown in Equations (S1) and (S2): 

 
3 3 2

1
* *

2
HNO NO H                                                                                                        (S1) 

3 3 2 3* *

1

2
DFT
NO NO H HNOE E E E E    

                                                                                      
 (S2) 

Here * denotes an active site in the surface and *NO3 represents the adsorbed nitrate group. 

The choice of a gas reference based on HNO3 and H2 instead of using dissolved NO3
- is due to 

the difficulties to describe accurately the electronic states, solvation effects and thus the 

energies of the latter within DFT.  

In Table S1, we present the gas-phase and adsorbed-state data needed to compute the free 

energies of adsorption at standard conditions of pressure and temperature, taking into account 

that DFTG E ZPE T S      . In the particular case of *NO3, only vibrational entropy 

effects were taken into account as they are normally the largest contribution for adsorbed 

species to the total entropy (some authors even neglect all kinds of entropy contributions for 

adsorbed species, see Ref. [1]).  

Table S1. Data for gas-phase H2 and HNO3 and adsorbed *NO3. The experimental data are marked in bold and 

taken from Ref. [2]. The rest of the data were obtained with DFT through vibrational analyses. 

Species ZPE / eV TS / eV 

H2 (g) 0.27 0.40 

HNO3 (g) 0.69 0.82 

*NO3 (ads) 0.38 0.31 

 

Moreover, it is worth noting that PBE has a marked limitation in its description of the 

energetics of molecules containing multiple bonds between atoms [3], such as those having 

O-N-O backbones. In Table S2, we present a list of selected N-, H-, and O-containing 

molecules, from which it is evident there exists a large overbinding in all O-N-O containing 

molecules that causes important differences between experimental and DFT-calculated 

formation energies. It is noteworthy that the error increases as more oxygen atoms are present 

in the molecules and that the predictions improve as hydrogen is added to them, i.e. as 

multiple bonds are reduced to simple bonds. Particularly, the error for in the formation energy 
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of HNO3 is around 1.12 eV, and thus we corrected our DFT-calculated free energies by that 

number. It should be noted that though this correction strengthens the actual values of 

the adsorption energies, it has no influence over the trends as it is only a constant shift 

applied to all values. Furthermore, the fact that standard DFT does not describe well 

HNO3 in gas phase does not imply that the binding energies of *NO3 presented here are 

wrong. 

 

Table S2. Comparison between experimental and DFT-predicted free energies of formation. The experimental 

data (TS) are marked in bold and taken from Ref. [4], the zero-point energies (ZPE) were calculated with DFT 

through vibrational analyses.  

species ZPE / eV TS / eV 0
DFTG / eV 0

EXPG  / eV 
0 0
EXP DFTG G   / eV 

NH3 (g) 0.91 0.60 -0.35 -0.17 0.18 

N2H4 (g) 1.39 0.74 1.33 1.65 0.32 

NO (g) 0.12 0.65 0.72 0.90 0.18 

NO2 (g) 0.24 0.74 -0.43 0.53 0.96 

N2O4 (g) 0.61 0.94 -1.11 1.01 2.12 

HNO2 trans (g) 0.53 0.77 -1.16 -0.46 0.71 

HNO2 cis (g) 0.53 0.77 -1.14 -0.43 0.71 

HNO3 (g) 0.69 0.82 -1.88 -0.77 1.12 

The relationship between DFT energies and free energies in the gas-phase scale, including 

the correction of 1.12 eV, is given in Equation S3.  

3 3
0.979DFT DFT

NO NOG E                                                                                                             (S3) 

 

1.2. Electrochemical Scale for the Adsorption Energies: we converted our DFT-calculated 

adsorption energies by means of Hess’ Law and the free energy diagram shown in Figure S1. 

The number 0.075 eV in that figure is obtained taking into account that the standard formation 

energies of HNO3 in liquid and gas phases are -0.836 eV and -0.762 eV, respectively. 

Furthermore, the number 0.317 eV is obtained by the combination of -0.836 eV, i.e. the 

formation energy of liquid nitric acid, and the standard formation energy of the NO3
- species 

in aqueous solutions, which is -1.153 eV. These values were taken from Ref. [2]. 
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Table S3. Binding energies and free energies of adsorption of NO3 on various surfaces. a) 111 Surfaces: 2×2 
unit cells for the NSAs and SAs (kps: 6×6×1) and 3×3 unit cells for the surfaces with adatoms (kps: 4×4×1). CN: 
9 for the terraces and 4 for the adatoms (3 bonds with the surface plus one with the other adatom). 

system 
3

DFT
NOE  

3

EC
NOG  

Pure Au 1.00 0.42 

NSA 25% Ag 1.02 0.43 

NSA 50% Ag 0.98 0.40 

NSA 75% Ag 0.97 0.38 

NSA 100% Ag 0.99 0.40 

SA 25% Ag 0.83 0.24 

SA 33% Ag 0.64 0.05 

SA 50% Ag 0.62 0.03 

SA 75% Ag 0.53 -0.06 

SA 100% Ag 0.26 -0.32 

Pure Ag 0.32 -0.27 

1Ag adatom in Au(111) 0.42 -0.17 

2Ag adatoms in Au(111) -0.35 -0.93 

2 Au adatoms in Au(111) 0.06 -0.53 

2 Ag adatoms in Ag(111) -0.28 -0.87 

 

b) 2-atom wide 211 surfaces (kps: 6×6×1). CN: 7 at the step edge.  

System 
3

DFT
NOE  

3

EC
NOG  

Pure Au 0.55 -0.04 

NSA 33% Ag 0.63 0.04 

NSA 50% Ag 0.56 -0.03 

NSA 66% Ag 0.55 -0.03 

NSA 100% Ag 0.61 0.03 

SA 33% Ag 0.22 -0.37 

SA 50% Ag 0.14 -0.45 

SA 66% Ag 0.12 -0.47 

SA 100% Ag 0.00 -0.58 

Pure Ag 0.07 -0.52 
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(A) 

 
(B) 

 
Figure S3. (A) Cyclic voltammograms of the polycrystalline Au working electrode before 
deposition of Ag adatoms. Electrolyte 0.1M HClO4. dE/dt = 50 mV/s. (B) cyclic 
voltammograms of stepped Au(hkl) surfaces (adapted from refs [7,8])  
 

Finally, Figure S4 illustrates the stability of measured current response caused by reduction 

of nitrate ions upon continuous cycling.  
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Figure S4. (A) Cathodic parts of continuous cyclic voltammograms of the Au electrode 
modified with ~ 0.45 ML Ag in 0.1 M HClO4 + 5 mM NaNO3: the first (black line) and the 
25th cycles (red line). dE/dt = 50 mV s-1. 
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