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I. Details on the analytical developments leading to eqns (10)-(11), eqn (28), and eqns (33), (36) and 

(38) in the main text. 

1. Expression of the metal concentration profiles (eqns (10)-(11)). 

The general solution of the Nernst-Planck equations (4)-(5) with differentiated metal diffusion 

coefficients inside and outside the microorganism soft surface layer is given by 

 ( )
oM o 3 ,r r rc a r r c F cβ 4

⎡ ⎤≤ ≤ = +⎢ ⎥⎣ ⎦  (S1) 

and ( )M o 1 ,r rc r r c F cβ ∞ 2⎡ ⎤≥ = +⎢ ⎥⎣ ⎦ , (S2) 

where we have introduced the integral function 
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integration constants to be determined from the boundaries (6)-(9). As argued in the text, it is convenient to 

first express  as a function of the metal concentration  at the bioactive surface with  given by  

1,...,4ic =

1,...,4ic =
a
Mc a

Mc

 
o

a
M a 3 , 4a rc c Fβ ⎡ ⎤= +⎢ ⎥⎣ ⎦ , (S3) 

which is obtained from eqn (S1) applied at the position r . Using eqns (S1) and (S2), the continuity of 

 at  (eqn (8)) is further written  

a=

( )Mc r or r=

 . (S4) 
o1 , 2 4rc F c c∞+ =

 1
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The condition given by eqn (9) for the continuity of metal flux at  may be arranged according to or r=

 ( ) ( ) ( )
oo o

M M 4d / d d / d 1 / d / dr r rr r r rc r r c r r c rε ε +− + == =
− + − ℑ 0β = , (S5) 

where we used the equality  and the eqns (22a)-(22b) that reflect the continuity of the 

potential and electric field displacement at . The derivatives 

( )
oM o 4 rc r r c β= =

or r= ( )
o

Md / d
r r

c r r −=
 and ( )

o
Md / d

r r
c r r +=

 

are evaluated from eqns (S1) and (S2), respectively. After some rearrangements, the substitution of the 

resulting expressions into eqn (S5) leads to  

 ( )
o oo

2 2
o 3 1 , o 4 2d / d +d / d 0r r r r rr r

r c c F r r r c cε β β ++
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∞ ==
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. (S6) 

The electrostatic boundaries given by eqn (22) were considered for deriving eqn (S6), together with the 

following relationships:  and . The 

constants  can be determined from eqns (S3), (S4), (S6) and eqn (6) in the main text, with as final 

result 
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, with ( )o , ,r a rF Fλ ε ∞= − +
o

. Finally, substituting the expressions of  given by eqn (S7) into eqns 

(S1) and (S2) leads to eqns (10) and (11) for the metal concentration profile . 

1,...,4ic =

( )Mc r

 

2. Derivation of the differential equation (28) for metal depletion kinetics under steady-state metal 

transport condition. Demonstration of the inequality 1 0Ω < . 

The amount of metal ions located outside the microorganism ( ) and within the Kuwabara cell of 

radius  is given by  

or r≥

cr

 , (S8) ( ) ( ) ( ) ( )( )( )
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,

r rwhere  and . Equation (S8) is obtained from eqn (11) with replacing ‘∞’ 

by ‘ ’ and further specifying that the bulk metal concentration 
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now depend on time t. By the same token, the amount of metals within the microorganism of radius  may 

be expressed in the form 

or

 ( ) ( ) ( ) ( ) ( )
o

o o o

2 1 1 a
M M , , , M a4 , d 4 /

r
a a
a r a r a r

a

r c r t r c t H G H c t c tπ π λ λ β∗ − − − ∗1
M

⎡ ⎤= + −⎣ ⎦∫ . (S9) 

The ratio ( ) ( )a 1
M a M/c t c tβ − ∗  involved in eqns (S8)-(S9) may be evaluated from eqn (17) and further written 

in the concise form 

 , (S10) ( ) ( ) ( )a 1
M a M/c t c t U tβ− ∗ = / 2

where  is the time-dependent function given by eqns (29)-(30). In addition, the uptake flux ( )U t ( )uJ t  

defined by eqn (1) may be expressed in terms of  as follows ( )U t

 ( ) ( ) ( ) ( )
11

u u M a M/ 1/ 1 2J t J K c t U tβ
−∗ − ∗⎧ ⎫⎡= + ⎤⎨ ⎬⎣⎩ ⎭⎦

/ dt⎤
⎦

. (S11) 

Then, starting from eqn (27) in the main text and further using eqns (S8), (S9) and (S11), we obtain the 

following differential equation that governs the time-dependent  ( )Mc t∗

 , (S12) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11

M M a M 1 M 2 M2 d / d dc t U t K c t U t c t t c t U tβ
−∗ − ∗ ∗ ∗⎡ ⎤ ⎡+ = Ω + Ω⎣ ⎦ ⎣

where  and  are provided by 1Ω 2Ω

 ( ) ( )c

o c o c o c o

1
1 , el el,in , , , el u1 / / /r a

r r r r r r a rG f f H F H a fε ε−⎡Ω = − − − −⎣
1 2a J− ∗⎤⎦ , (S13) 

and  ( )
c

2
2 1 , u/a rG a J ∗ / 2⎡ ⎤Ω = − Ω +⎣ ⎦ . (S14) 

Equations (S12), (S13) and (S14) correspond to eqn (28), (31) and (32) given in the main text, respectively. 

It is straightforward to verify the following relationships: , 2
u 0a J ∗ >

o, 0a
a rH < , , , 

 and 

o c, 0r rG > c

o c, 0r
r rH >

o c, 0r rF > 1
el el,in/f fε − >1. The latter inequality results from 1ε ≤  and el el,inf f≥ (which is justified from 

eqn (13) in the text), having in mind that the conductive diffusion factors elf , el,inf  and el,outf  are 

dimensionless positive quantities. In turn, 1Ω  defined by eqn (S13) necessarily satisfies  . 1 0Ω ≤

 

3. Derivation of the limiting kinetic regimes expressed by eqns (33), (36) and (38). 

Equation (S12) may be rearranged in the following differential form where time and metal 

concentration variables are separated 

 ( )M Mdc cω ∗ ∗ dt= , (S15) 

where ω  is a function of  according to Mc∗
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 ( ) ( ) ( ) ( ){ } ( ) -11
M M a M M 1 2 M M M M M2c K c U c U c c c c U cω β∗ − ∗ ∗ ∗ ∗ ∗ ∗⎡ ⎤ ⎡ ⎤ ⎡= + Ω + Ω + Σ

⎣ ⎦ ⎣ ⎦ ⎣
∗ ⎤

⎦
. (S16) 

The functions ( )MU c∗  in eqn (S16) is now written in terms of Mc∗   

 ( ) ( ) ( ) ( )
1/ 22

M M M M4U c u c u c A c∗ ∗ ∗ ∗⎡ ⎤= − + +⎢ ⎥⎣ ⎦
, (S17) 

with ( ) 1
M M a /A c K cβ∗ −= M

∗  and ( ) ( )( )1
M M 1u c A c Bn∗ ∗ − 1= + − . The function ( )Mc∗Σ  involved in eqn (S16) 

is defined by ( ) ( )( ) ( )M M Md /d / dc U c t t c t∗ ∗ ∗⎡ ⎤ /dt⎡ ⎤Σ = ⎣ ⎦⎣ ⎦
, which after developments leads to  

( ) ( ) ( ) ( )
1/ 221 1

M M a M M M M a M a M
1 11 4 1 2c K u c A c u c K K c

Bn Bn
β β

−
∗ − ∗ ∗ ∗ − −

⎧ ⎫⎡ ⎤⎪ ⎡ ⎤⎛ ⎞ ⎛ ⎞Σ = + − + + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

1 2/β ∗⎪ , (S18) 

where Bn  is the (time-independent) bioavailability number Bn  defined by eqn (19).  

• For situations where ( )( )1
M 1A c Bn∗ −+ << 1  (or, equivalently, ( )M 0u c∗ << ), the function ω  may be 

linearized via considering the first order term in its corresponding Taylor development with respect to the 

variable ( )( ) ( ) ( )1 1 1
M M a M1 1 /Y A c Bn K Bn c tβ∗ − − − ∗≡ + = + 1<< . Rewriting ( )Mcω ∗  in the form ( )Yω , 

performing the aforementioned Taylor expansion, we show that eqn (S15) to the first order in Y is  

 ( )1
M a M M L1/ 1/ d d /K c c tβ τ− ∗ ∗⎡ ⎤+ = −

⎣ ⎦
, (S19) 

with the time constant Lτ  defined by 

 (1
L M a 1 2Kτ β − )2= − Ω + Ω . (S20) 

The inequality ( )( )1
M 1 1A c Bn∗ −+ << , or ( ) ( )1

M 1/ 1A c Bn∗ << + − , that marks the validity of eqns (S19)-

(S20), goes in pair with ( )M 1A c∗ <<  because  and thus 1 0Bn− ≥ ( )11/ 1 1Bn−+ ≤ . Under the limit examined 

here, we then have  so that eqn (S19) further simplifies into 1
M a M/K cβ − ∗ << 1

 ( )1
M M ad / d /c K t Lβ τ∗ − = − . (S21) 

The solution of eqn (S21) is expressed by eqn (33) in the text. Using the relationship 

( )
c

2
1 2 ,2 /a rG a J ∗Ω + Ω = − u  derived from eqn (S14), the expression (S20) for Lτ  may be rewritten as 

 ( )
c

2
L M , a u/a rK G a Jτ β ∗= . (S22) 

Substituting eqn (3) for uJ ∗  into eqn (S22) and further introducing the surface resistance ( )S int H1/R k K aβ=  

and the area of the bioactive surface 2
a 4S aπ= , we obtain eqn (34) given in the main text for Lτ . 
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•  In the other limit ( )( )1
M 1 1A c Bn∗ −+ >>  (i.e. ( )M 0u c∗ >> ), the function ω  may now be linearized via 

considering the first order term in its corresponding Taylor development with respect to the variable 

( )( ) ( ) ( )1 1
M M M a1/ 1 / 1 1Z A c Bn c t K Bnβ∗ − ∗ − −⎡ ⎤ ⎡≡ + = +⎣ ⎦ ⎣

1 ⎤ <<⎦ . After rewriting ( )Mcω ∗  in the form ( )Zω , we 

find that eqn (S15) becomes to the leading order in Z  

 M M1/ d d /c c t Eξ τ∗ ∗⎡ ⎤+ = −⎣ ⎦ , (S23) 

where ξ  is defined by the expression 

  ( ){ } ( ) ( ){ } 111 1 1 1
1 2 M a 1 22 2 1 1 1 2Bn K Bn Bnξ β

−−− − − −⎡ ⎤ ⎡ ⎤= Ω + Ω − + + Ω + + Ω⎣ ⎦⎢ ⎥⎣ ⎦
, (S24) 

and the characteristic timescale Eτ  is provided by the relation 

 ( )1 1
E M a 1 1 2K Bnτ β − −

2⎡ ⎤= − Ω + + Ω⎣ ⎦ . (S25) 

For , 1 1Bn− << ξ  may be developed as follows 

 ( ) ( )1
M a1/ K O Bnξ β − +∼ 1− . (S26) 

where the symbol O denotes order of magnitude. The combination of ( )( )1
M 1 1A c Bn∗ −+ >>  and 1 1Bn− <<  

leads to ( )M 1A c∗ >>  or equivalently . The latter inequality used with eqn (S26) and eqn 

(S23) finally yields 

1
M a M/K cβ − ∗ >> 1

 M M Ed / d /c c t τ∗ ∗ = − , (S27) 

i.e.  ( ) ( ) ( )M M E/ 0 exp /c t c t τ∗ ∗ = − , (S28) 

which is eqn (36) in the main text. For cases where , we have  1 1Bn− >>

 ( )2O Bnξ ∼ , (S29) 

and eqn (S23) again reduces to eqn (S27) whose solution is expressed by the exponential decay of  

given by eqn (S28). For cases where none of the inequalities 

( )Mc t∗

1 1Bn− <<  and  applies, integration 

of eqn (S23) leads to  

1 1Bn− >>

 ( ) ( )( ) ( )
( )

M
M M

M
0 ln /

0
c t

c t c t
c

Eξ τ
∗

∗ ∗
∗

⎛ ⎞
− + = −⎜ ⎟⎜ ⎟

⎝ ⎠
. (S30) 

The solution  of the transcendental equation (S30) may be formulated in terms of the Lambert 

function W defined by 

( )Mc t∗

( ) ( )expW x W x x=⎡ ⎤⎣ ⎦  for any argument x . The solution is then written  

 ( ) ( ) ( ) ( )( ) ( )1
M M M E M M/ 0 0 exp / 0 / 0c t c W c t c cξ ξ τ ξ∗ ∗ − ∗ ∗ ∗⎡ ⎤= − +⎣ ⎦ , (S31) 
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which is eqn (38) in the main text. Finally, the expression (S25) for Eτ  may be written in the form 

 [ ]1
E M a 1 2 M a 12K Kτ β β 1 1Bn− −= − Ω + Ω − Ω − . (S32) 

The first term in the right hand side of eqn (S25) identifies to Lτ  (eqn (S20) while the second term can be 

rearranged according to , where we have used eqn (19), eqn (3) and the 

definition 

1 1 2
M a 1 u 1 T a4K Bn a J Rβ π− − ∗Ω = Ω / S

( )1
T M,out el1/R D f a−=  for the conductive-diffusional mass transfer resistance. In turn, eqn (S32) 

identifies to that given in eqn (37). 

 

II. Details on the numerical solving of eqns (4)-(5) and eqn (20) in the main text. 

1. Solution of the non-linear Poisson-Boltzmann equation (20). 

The non-linear Poisson Boltzmann equation governing the potential distribution ( )y r  across the soft 

biointerphase depicted in Figure 1 may be written in the general form 

 ( ) ( ) ( ) ( ) ( ) ( )2 2
o o2 / sinh /r y r z F c RT y r zF f r RTρε ε ρ∞⎡ ⎤ ⎡ ⎤∇ • ∇ = −⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦ , (S33) 

where ( )rε  stands for the relative dielectric permittivity at the position  and r ( )o f rρρ  corresponds to the 

spatial distribution of fixed charges carried by the soft biointerphase with ( )o 0f r rρ > = . ( )f rρ  may be 

formulated according to1 

 ( ) ( ){ }o1 tanh / / 2f r r rρ α= − −⎡ ⎤⎣ ⎦ , (S34) 

with α  the characteristics decay length of the density of soft material and fixed charges across the 

biointerphase. In the limit 0α → , the case of uniform charge distribution across the soft microbial surface 

layer is recovered. By the same token, we may write ( ) ( )rr fεε ε= r  where rε  is the relative dielectric 

permittivity of the bulk medium and ( )f rε  the function defined by 

 ( ) ( ) ( ) ( )o c1f r f r f r rε ρ ρ= ℑ − + + − r , (S35) 

with s r/ε εℑ = ,  as defined in the main text. In the limit 0α → , eqn (S35) leads to ( )oa r r sε ε≤ ≤ =  and  

( )o cr r r rε ε≤ ≤ = . Combining eqns (S33)-(S35) provides after some arrangements 

 ( ) ( )
( ) ( ) ( )

( )
( )
( )

22
o2 d d sinh1

d d 2r

f rf r y r y r
y r

f r r r f r zFc f r
ρε

ε ε

κ ρκ
∞∇ = − + −

ε

, (S36) 

which simplifies into eqn (20) for 0α →  i.e. for uniform distribution of charge and dielectric permittivity 

within the soft surface layer. Equation (S36) and boundaries (21), (23) may be solved numerically by means 

of the COLSYS procedure detailed elsewhere.2 It is stressed that the formulation of diffuse distributions for 

the density of fixed charges and for the dielectric permittivity across the biointerphase (eqn (S34) and (S35), 
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respectively) as subsumed into eqn (S36), automatically verifies the boundaries given by eqn (22) for the 

continuity of electrostatic potential and electric field displacement at the position . or r=

 

2. Solution of the Nernst-Planck equation (4)-(5) for non-uniform distribution of metal diffusion coefficient 

across the microorganism soft surface layer. 

Following the strategy given in the preceding section, the spatial distribution of the diffusion coefficient 

( )MD r  across the whole biointerphase may be written ( ) ( )M M,out DD r D f r=  with ( )Df r  defined by 

 ( ) ( ) ( ) ( )D 1 o cf r f r f r rρ ρε= − + + − r . (S37) 

and M,in M,out/D Dε = . After some developments and using this continuous dependence of the metal 

diffusion coefficient on radial position, the Nernst-Planck equation governing the spatial distribution of 

metal concentration across the biointerphase is given in steady-state by 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )2 2M D DM M

M M
D D

d d d d d1 1
d d d dr r

c r f r y r f r y rz zc r c r y r
r f r r z r z f r r r

⎡ ⎤ ⎡
∇ = − + − ∇ +⎢ ⎥ ⎢

⎣ ⎦ ⎣ d
⎤
⎥
⎦

. (S38) 

Equation (S38) with boundaries (6)-(7) may be solved numerically using the same collocation algorithm 

than that employed for the electrostatic problem.2 Under the condition 0α → , eqn (S38) reduces to eqns 

(4) and (5) in the main text. It is further emphasized that eqn (S38) necessarily satisfies the requirements of 

continuity for the metal concentration and for the metal flux at or r=  (eqns (8) and (9), respectively). 

Finally, in view of the different magnitudes for the key electrostatic and diffusion length scales relevant for 

the problem, it is judicious to replace in the numerical scheme the far-field boundary condition expressed by 

eqn (6) by the following relationship 

 ( ) ( )2 M
M M c

d
/ 1 1/ 1/

d
r r

c r
c r r c r r r

r ∗

∗ ∗ ∗ ∗

=

⎡ ⎤= = + −⎣ ⎦  (S39) 

where  ( 1)  is a position just outside the extra-particulate electric double layer, i.e.  o /r r n κ∗ = + n >>

 ( ) ( ) ( )2d / d
r rr

y r y r r y r∗∗

∗
=

= = ∇ 0= . (S40) 

Equation (S39) is obtained upon solving eqn (S38) outside the extra-particulate electric double layer where 

eqn (S40) is applicable. 
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