Accurate quantum chemical energies for tetrapeptide conformations: Why MP2 data with an insufficient basis set should be handled with caution

Lars Goerigk,*a Amir Karton,*a,b,c Jan M. L. Martin*d,e and Leo Radom*a,b

^a School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. Fax:
+61 2-9351-3329; Tel: +61 2-9351-2733;
E-mail: lars.goerigk@chem.usyd.edu.au, radom@chem.usyd.edu.au

^b ARC Centre of Excellence for Free Radical Chemistry and Biotechnology

^c Current address: School of Chemistry and Biochemistry, University of Western Australia, Perth, Crawley, WA 6009, Australia. Fax: +61 8-6488-7330; Tel: +61 8-6488-3139; E-mail: amir.karton@uwa.edu.au

^{*d*} Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, TX 76201, USA.

^e Current address: Department of Organic Chemistry, Weizmann Institute of Science, IL-76100 Rehovot, Israel. Fax: +972 8-934-4142; Tel: +972 8-934-2533; E-mail: gershom@weizmann.ac.il

Electronic Supporting Information

14 pages

(contains technical details, statistical data, and relative and absolute energies for various theoretical approaches (Tables S1-S3) and structures of the tetrapeptide conformers (Tables S4-S5))

Technical Details

All MP2, SCS-MP2,¹ MP2-F12,² and CCSD(T)³ calculations were carried out with MOLPRO 2010.1.⁴ The convergence criterion for all SCF steps was set to 10^{-8} E_h. Density fitting/resolution-of-the-identity⁵ (RI) approaches were used in the (SCS-)MP2 and MP2-F12 calculations.

Dunning's⁶ correlation-consistent basis sets cc-pVDZ, cc-pVTZ and cc-pVQZ were employed, and will be abbreviated as VDZ, VTZ and VQZ in the following. Additional MP2 calculations were carried out at the double- and triple- ζ levels with the addition of diffuse functions from the respective augmented correlation-consistent Dunning sets to all non-hydrogen atoms (dubbed a'VDZ and a'VTZ in the following). MP2-F12 calculations were carried out with ansatz "3C(FIX)"⁷ and geminal exponents $\beta = 0.9$ for VDZ-F12 and $\beta = 1.0$ for VTZ-F12.⁸

Extrapolations to the complete-basis-set (CBS) limit were carried out based on the MP2-F12 single-point energies by the two-point extrapolation scheme:⁹

$$E(CBS) = \frac{E(VXZ - F12) X^n - E(VYZ - F12) Y^n}{X^n - Y^n}.$$
 (S1)

X and Y represent the respective cardinal numbers of the applied basis sets (X, Y = 2 or 3 for VDZ-F12 and VTZ-F12). An exponent of $n = 3.087838^{10}$ was used to extrapolate the MP2-F12 energies. Alternative MP2/CBS values were obtained based on MP2/VTZ and MP2/VQZ energies (X, Y = 3 or 4). In that case, the HF and MP2 correlation energies were extrapolated separately with exponents of n = 5 and n = 3, respectively.⁹ The relative conformational energies for the two tetrapeptides based on the two MP2/CBS schemes are shown in Table S1. In most cases, the energies are very similar to one another. However, in some cases deviations of up to 0.7 kJ mol⁻¹ are observed. From previous studies,¹⁰ it is more likely that the values based on MP2-F12 are closer to the 'true' CBS limit and therefore only those numbers are discussed in the main text and also used in the derivation of the estimated CCSD(T)/CBS values. These were obtained by using the approach of Jurečka and Hobza:¹¹

$$E(CCSD(T)/CBS) \approx E(MP2/CBS) + E(CCSD(T)/VDZ) - E(MP2/VDZ).$$
(S2)

Additional density functional theory (DFT) calculations were carried out with functionals that have been shown to be among the best methods for describing conformational energies.¹² These include B-LYP,^{13,14} B3-LYP,^{15,16} PW6B95,¹⁷ M06-2X¹⁸ and the double-hybrid DFT procedures B2-PLYP,¹⁹ B2GP-PLYP,²⁰ PWPB95²¹ and DSD-PBEP86.²² M06-2X and DSD-PBEP86 calculations were carried out with Gaussian 09 Rev. C01,²³ while all the other DFT computations were performed with ORCA 2.9.²⁴ In all cases, the VQZ basis set was employed. Grimme's dispersion-correction DFT-D3²⁵ combined with the Becke-Johnson damping formula²⁶ was applied by using the standalone program DFTD3.²⁷ As discussed in the literature, highly-parameterised functionals such as the Minnesota classes of functionals can also benefit from additional dispersion corrections.^{12,28} For the sake of consistency we applied DFT-D3 also to M06-2X. However, instead of Becke-Johnson, so-called 'zero-damping' was applied.¹² The SCF convergence criterion in all cases was again set to 10^{-8} E_h. The largest ORCA quadrature grid "7" and Gaussian's "ultrafine" grid were used in the numerical integration to determine the exchange-correlation energies. All ORCA calculations were sped up with RI methods for the perturbative parts of the double-hybrids and the Coulomb part of the B-LYP functional. Calculation of exchange and Coulomb contributions in hybrid functionals and the hybrid parts of the double-hybrids was sped up by employing the RI method combined with Neese's "chain of spheres" approach (RIJCOSX).²⁹ The respective auxiliary basis sets were taken from ORCA's internal basis-set library.

Energies and statistical data for the various tetrapeptide conformers

Table S1 Relative energies (kJ mol ⁻¹) for the two tetrapeptides with respect to each β_a conformer. Various wave function and
dispersion-corrected density functional theory methods were tested, with various basis sets.

	ACE-ALA-GLY-ALA-NME						ACE-AL	A-SER-	ALA-NM	E
	β_a	α_{R}	PP-II	α_L	β	β_a	α_{R}	PP-II	$lpha_{ m L}$	β
CCSD(T)/CBS ^a	0.0	2.4	4.4	8.0	8.5	0.0	4.4	11.0	7.5	11.1
CCSD(T)/VDZ	0.0	-13.1	-1.0	-11.2	7.5	0.0	-10.7	3.5	-11.4	9.9
MP2/CBS ^b	0.0	0.4	6.9	7.1	8.6	0.0	2.2	13.1	7.3	11.7
MP2/CBS ^c	0.0	0.0	6.8	6.5	9.1	0.0	1.7	12.7	6.6	12.0
MP2/VQZ	0.0	-2.2	6.2	4.4	8.7	0.0	-0.2	12.0	5.1	11.8
MP2/a'VTZ	0.0	-5.5	4.5	1.6	8.3	0.0	-3.6	10.6	1.9	11.2
MP2-F12/VTZ-F12	0.0	0.2	6.9	7.0	8.5	0.0	2.0	13.2	7.2	11.7
MP2/VTZ	0.0	-7.3	4.7	-0.8	8.1	0.0	-4.7	10.4	0.8	11.6
MP2/a'VDZ	0.0	-12.9	0.4	-6.1	7.0	0.0	-10.3	5.9	-5.4	10.4
MP2-F12/VDZ-F12	0.0	-0.1	7.1	6.7	8.4	0.0	1.7	13.4	6.9	11.5
MP2/VDZ	0.0	-15.1	1.4	-12.1	7.6	0.0	-12.9	5.6	-11.6	10.5
SCS-MP2/CBS ^c	0.0	6.5	6.8	13.5	9.1	0.0	7.9	12.7	13.2	11.2
SCS-MP2/VQZ	0.0	4.1	6.0	11.1	8.7	0.0	5.7	11.8	11.4	11.0
SCS-MP2/VTZ	0.0	-1.2	4.4	5.6	8.1	0.0	0.9	10.0	6.6	10.8
SCS-MP2/VDZ	0.0	-10.6	0.6	-7.5	7.8	0.0	-8.8	4.6	-7.7	9.9
HF/CBS ^d	0.0	34.6	6.8	44.0	11.7	0.0	34.8	13.7	42.6	11.0
HF/VQZ	0.0	33.5	6.4	42.7	11.7	0.0	33.9	13.3	41.4	11.1
HF/VTZ	0.0	30.1	5.4	38.5	11.6	0.0	30.9	12.0	37.4	11.4
HF/VDZ	0.0	17.2	1.4	20.9	11.2	0.0	19.0	7.3	18.6	1.3
B-LYP-D3/VQZ	0.0	0.5	7.8	7.6	5.4	0.0	3.5	14.3	10.0	9.1
B3-LYP-D3/VQZ	0.0	3.5	7.8	10.4	7.8	0.0	6.0	14.2	11.4	10.8
PW6B95-D3/VQZ	0.0	5.7	9.7	10.1	8.8	0.0	6.9	15.8	8.5	11.9
M06-2X-D3/VQZ	0.0	-1.0	5.7	3.1	11.4	0.0	-0.4	10.6	0.5	13.6
B2-PLYP-D3/VQZ	0.0	4.0	7.6	10.7	8.3	0.0	6.8	14.8	11.7	11.5
B2GP-PLYP-D3/VQZ	0.0	4.7	7.5	11.2	8.8	0.0	7.6	15.0	12.1	12.3
PWPB95-D3/VQZ	0.0	4.5	8.4	9.1	8.9	0.0	6.0	15.0	7.6	12.2
DSD-PBEP86-D3/VQZ	0.0	2.3	6.3	8.6	8.4	0.0	4.2	12.4	8.8	16.1

^a MP2-F12/V{D,T}Z-F12 corrected for difference between CCSD(T)/VDZ and MP2/VDZ. ^b MP2-F12/V{D,T}Z-F12 result obtained as described in technical details. ^c(SCS-)MP2/V{T,Q}Z results obtained with exponents of n = 5 for the extrapolation of HF energies and of n = 3 for the extrapolation of the (SCS-)MP2 correlation energies. ^d HF/V{T,Q}Z results obtained with extrapolation exponent of n = 5.

Table S2 Mean deviations (MDs), mean absolute deviations (MADs) and root-mean-square deviations (RMSDs) (kJ mol⁻¹) for various wave function and density functional theory methods. The numbers were calculated with respect to the estimated CCSD(T)/CBS reference values for the two tetrapeptides.

	MD	MAD	RMSD
CCSD(T)/VDZ	-10.5	10.5	12.7
MP2/CBS ^a	0.0	1.3	1.6
MP2/VQZ	-1.4	2.4	2.9
MP2/a'VTZ	-3.5	3.6	5.0
MP2-F12/VTZ-F12	-0.1	1.4	1.7
MP2/VTZ	-4.3	4.5	6.1
MP2/a'VDZ	-8.5	8.5	10.4
MP2-F12/VDZ-F12	-0.2	1.6	1.9
MP2/VDZ	-10.5	10.5	13.3
SCS-MP2/CBS ^b	3.0	3.0	3.6
SCS-MP2/VQZ	1.6	1.6	2.0
SCS-MP2/VTZ	-1.5	1.5	2.0
SCS-MP2/VDZ	-8.6	8.6	10.4
HF/CBS ^c	17.7	17.8	23.7
HF/VQZ	17.1	17.1	22.9
HF/VTZ	15.0	15.0	20.3
HF/VDZ	5.0	9.1	10.3
B-LYP-D3/VQZ	0.1	2.2	2.4
B3-LYP-D3/VQZ	1.8	2.1	2.4
PW6B95-D3/VQZ	2.5	2.5	3.0
M06-2X-D3/VQZ	-1.7	3.4	3.9
B2-PLYP-D3/VQZ	2.3	2.3	2.7
B2GP-PLYP-D3/VQZ	2.7	2.7	3.0
PWPB95-D3/VQZ	1.8	1.8	2.3
DSD-PBEP86-D3/VQZ	1.2	1.3	2.0

^a MP2-F12/V{D,T}Z-F12 result obtained as described in technical details. ^b SCS-MP2/V{T,Q}Z results obtained with exponents of n = 5 for the extrapolation of HF energies and of n = 3 for the extrapolation of the SCS-MP2 correlation energies. ^d HF/V{T,Q}Z results obtained with extrapolation exponent of n = 5.

	ACE-ALA-GLY-ALA-NME						ACE-ALA-SER-ALA-NME				
	β_{a}	$\alpha_{\rm R}$	PP-II	$\alpha_{\rm L}$	β	β_a	$\alpha_{ m R}$	PP-II	$\alpha_{\rm L}$	β	
CCSD(T)/CBS ^a	-950.21392	-950.21301	-950.21223	-950.21086	-950.21069	-1064.64617	-1064.64450	-1064.64200	-1064.64331	-1064.64194	
CCSD(T)/VDZ	-948.71975	-948.72473	-948.72013	-948.72401	-948.71689	-1062.96768	-1062.97176	-1062.96636	-1062.97203	-1062.96390	
MP2/CBS ^b	-949.97990	-949.97976	-949.97729	-949.97719	-949.97663	-1064.38979	-1064.38896	-1064.38479	-1064.38701	-1064.38533	
MP2/CBS ^c	-949.94973	-949.94973	-949.94714	-949.94726	-949.94627	-1064.35575	-1064.35509	-1064.35092	-1064.35324	-1064.35118	
MP2/VQZ	-949.75008	-949.75093	-949.74773	-949.74839	-949.74677	-1064.13189	-1064.13199	-1064.12731	-1064.12994	-1064.12741	
MP2/a'VTZ	-949.50887	-949.51095	-949.50714	-949.50825	-949.50572	-1063.86252	-1063.86388	-1063.85848	-1063.86179	-1063.85825	
MP2-F12/VTZ-F12	-949.94770	-949.94761	-949.94507	-949.94504	-949.94445	-1064.35333	-1064.35255	-1064.34830	-1064.35059	-1064.34889	
MP2/VTZ	-949.43847	-949.44124	-949.43669	-949.43878	-949.43539	-1063.78247	-1063.78426	-1063.77852	-1063.78217	-1063.77805	
MP2/a'VDZ	-948.67655	-948.68145	-948.67669	-948.67888	-948.67387	-1062.93256	-1062.93647	-1062.93033	-1062.93461	-1062.92860	
MP2-F12/VDZ-F12	-949.86728	-949.86733	-949.86459	-949.86475	-949.86408	-1064.26227	-1064.26164	-1064.25718	-1064.25966	-1064.25789	
MP2/VDZ	-948.48574	-948.49148	-948.48520	-948.49033	-948.48284	-1062.71130	-1062.71622	-1062.70915	-1062.71572	-1062.70729	
SCS-MP2/CBS ^c	-949.92343	-949.92093	-949.92083	-949.91830	-949.91997	-1064.32452	-1064.32153	-1064.31969	-1064.31951	-1064.32025	
SCS-MP2/VQZ	-949.70964	-949.70808	-949.70735	-949.70540	-949.70633	-1064.08492	-1064.08276	-1064.08041	-1064.08059	-1064.08074	
SCS-MP2/VTZ	-949.37867	-949.37913	-949.37701	-949.37655	-949.37557	-1063.71393	-1063.71357	-1063.71014	-1063.71140	-1063.70981	
SCS-MP2/VDZ	-948.41221	-948.41623	-948.41198	-948.41505	-948.40922	-1062.62814	-1062.63148	-1062.62638	-1062.63106	-1062.62436	
HF/CBS ^d	-945.95236	-945.93919	-945.94979	-945.93560	-945.94790	-1059.89532	-1059.88205	-1059.89011	-1059.87907	-1059.89114	
HF/VQZ	-945.93174	-945.91898	-945.92929	-945.91548	-945.92729	-1059.87218	-1059.85928	-1059.86713	-1059.85641	-1059.86797	
HF/VTZ	-945.86547	-945.85402	-945.86343	-945.85081	-945.86105	-1059.79783	-1059.78607	-1059.79324	-1059.78357	-1059.79349	
HF/VDZ	-945.60079	-945.59424	-945.60024	-945.59284	-945.59651	-1059.49931	-1059.49209	-1059.49653	-1059.49223	-1059.49501	
B-LYP-D3/VQZ	-951.39458	-951.39440	-951.39160	-951.39169	-951.39252	-1065.95585	-1065.95453	-1065.95040	-1065.95204	-1065.95239	
B3-LYP-D3/VQZ	-951.16000	-951.15865	-951.15703	-951.15604	-951.15702	-1065.69234	-1065.69007	-1065.68694	-1065.68799	-1065.68825	
PW6B95-D3/VQZ	-952.78220	-952.78003	-952.77851	-952.77835	-952.77885	-1067.50040	-1067.49777	-1067.49440	-1067.49718	-1067.49588	
M06-2X-D3/VQZ	-951.22728	-951.22766	-951.22511	-951.22608	-951.22295	-1065.76815	-1065.76832	-1065.76411	-1065.76794	-1065.76297	
B2-PLYP-D3/VQZ	-951.13168	-951.13017	-951.12877	-951.12761	-951.12851	-1065.66199	-1065.65941	-1065.65637	-1065.65754	-1065.65762	
B2GP-PLYP-D3/VQZ	-951.01299	-951.01120	-951.01014	-951.00872	-951.00965	-1065.53008	-1065.52717	-1065.52435	-1065.52549	-1065.52538	
PWPB95-D3/VQZ	-951.15543	-951.15373	-951.15224	-951.15198	-951.15205	-1065.68821	-1065.68594	-1065.68251	-1065.68533	-1065.68358	
DSD-PBEP86-D3/VQZ	-950.08138	-950.08051	-950.07897	-950.07810	-950.07817	-1064.49384	-1064.49225	-1064.48912	-1064.49048	-1064.48770	

Table S3 Absolute energies (E_h) for all considered conformers of the two tetrapeptides. Results are shown for various wave function and dispersion-corrected density functional theory methods.

^a MP2-F12/V {D,T}Z-F12 corrected for difference between CCSD(T)/VDZ and MP2/VDZ. ^b MP2-F12/V {D,T}Z-F12 result obtained as described in technical details. ^c (SCS-)MP2/V {T,Q}Z results obtained with exponents of n = 5 for the extrapolation of HF energies and of n = 3 for the extrapolation of the (SCS-)MP2 correlation energies. ^d HF/V {T,Q}Z results obtained with extrapolation exponent of n = 5.

Geometries for conformers of the two tetrapeptides

Backbone geometries are usually described by the dihedral angles ϕ (C-N-C α -C) and ψ (N-C α -C-N).

The dihedrals for the five tested conformations are:

- $\phi = -140^{\circ}$ and $\psi = 135^{\circ}$ for the β_a conformer,
- $\phi = -57^{\circ}$ and $\psi = -47^{\circ}$ for the α_{R} conformer,
- $\phi = -79^{\circ}$ and $\psi = 150^{\circ}$ for the PP-II conformer,
- $\phi = 57^{\circ}$ and $\psi = 47^{\circ}$ for the α_{L} conformer, and
- $\phi = -119^{\circ}$ and $\psi = 113^{\circ}$ for the β conformer.

The Cartesian coordinates (Å) of all 10 conformers are given below. All structures were taken from ref. 30.

Table S4 Geometric structures (Å) of the five conformers of ACE-ALA-GLY-ALA-NME.

	$\beta_a c$	onformer		α_R conformer
Н	-7.569044	-0.937848	-0.872932	Н -1.902834 3.364174 -1.576849
С	-6.756047	-1.135862	-0.174932	C -2.612847 3.049204 -0.807849
Н	-6.406065	-2.164868	-0.309932	Н -3.607851 2.954245 -1.249849
Н	-7.129046	-1.042856	0.850068	Н -2.637814 3.835205 -0.046849
С	-5.636030	-0.138882	-0.438932	C -2.106900 1.770183 -0.168849
0	-5.707015	0.728120	-1.302932	O -0.929905 1.631134 0.163151
Ν	-4.543032	-0.283901	0.368068	N -3.027941 0.773221 -0.001849
Н	-4.479045	-1.036902	1.041068	Н -3.996931 1.002261 -0.176849
С	-3.352018	0.539079	0.228068	C -2.770989 -0.400790 0.842151
Н	-3.371011	0.944079	-0.787932	Н -2.545976 -0.075799 1.864151
С	-3.321998	1.699078	1.238068	C -3.999027 -1.314739 0.852151
Н	-3.319005	1.309078	2.260068	Н -4.240042 -1.671729 -0.153849
Н	-2.427987	2.316063	1.098068	Н -3.803063 -2.182747 1.486151
Н	-4.203987	2.328094	1.097068	Н -4.872005 -0.791703 1.258151
С	-2.145034	-0.381942	0.439068	C -1.510021 -1.173842 0.410151
0	-2.126048	-1.190943	1.366068	O -0.729039 -1.608874 1.243151
Ν	-1.129032	-0.238960	-0.448932	N -1.397031 -1.425846 -0.922849
Н	-1.175020	0.443041	-1.193932	Н -2.033012 -0.957820 -1.551849
С	0.117956	-0.970981	-0.335932	C -0.258062 -2.156893 -1.465849
Н	0.184949	-1.366983	0.680068	Н -0.231104 -3.170895 -1.060849
Н	0.141941	-1.821982	-1.030932	Н -0.380064 -2.215888 -2.550849
С	1.265972	-0.028001	-0.698932	C 1.123964 -1.546951 -1.151849
0	1.172985	0.717000	-1.672932	O 2.071934 -2.268990 -0.892849
Ν	2.340972	-0.059020	0.123068	N 1.231019 -0.197955 -1.361849
Н	2.390960	-0.699021	0.906068	Н 0.374041 0.340080 -1.298849
С	3.544985	0.723959	-0.126932	C 2.460049 0.516994 -1.001849
Н	3.538990	0.976959	-1.190932	Н 3.283029 0.049960 -1.545849
С	3.573008	2.013959	0.707068	C 2.337110 1.989999 -1.397849
Н	3.565003	1.773959	1.774068	Н 1.502129 2.468034 -0.875849
Н	4.473018	2.597943	0.491068	Н 3.257131 2.518961 -1.132849
Н	2.697018	2.623974	0.471068	Н 2.181114 2.087006 -2.476849
С	4.735970	-0.175062	0.235068	C 2.874043 0.376977 0.483151
0	4.727958	-0.836062	1.270068	O 4.054037 0.223929 0.779151
Ν	5.767969	-0.190080	-0.642932	N 1.876051 0.570018 1.389151
Н	5.701979	0.348922	-1.491932	Н 0.920052 0.600058 1.062151
С	6.965956	-0.977100	-0.387932	C 2.089043 0.386010 2.813151
Н	6.715937	-2.037096	-0.278932	Н 3.158037 0.235966 2.971151
Н	7.654958	-0.854112	-1.224932	Н 1.764080 1.269023 3.376151
Н	7.457961	-0.651109	0.534068	Н 1.542007 -0.488968 3.181151

Table S4 continued

:

	PP-II conf	ormer			$\alpha_{\rm L}$ c	onformer	
Н 7.	170034 0.86	9937 -0.53	30959	Н	2.312973	-1.374089	3.345925
C 6.	.277036 1.07	6944 0.05	59041	С	3.070973	-1.369112	2.559925
Н 5.	900044 2.06	5947 -0.22	24959	Н	3.369942	-2.407121	2.385925
Н 6.	.532036 1.09	9942 1.12	22041	Н	3.943990	-0.805138	2.897925
C 5.	222028 0.03	1952 -0.26	62959	С	2.451989	-0.821093	1.286925
O 5.	179023 -0.55	4048 -1.3	35959	0	1.306981	-1.111059	0.945925
N 4.	.326026 -0.22	3041 0.75	57041	Ν	3.236015	0.036883	0.560925
Н 4.	.233031 0.50	9960 1.45	50041	Н	4.205017	0.103855	0.837925
C 3.	083020 -0.91	4031 0.45	56041	С	2.944025	0.383892	-0.842075
Н 3.	329014 -1.69	3033 -0.2	70959	Н	3.644049	1.189871	-1.095075
C 2.	484015 -1.53	1026 1.72	29041	С	3.150990	-0.790114	-1.799075
Н 2.	.301021 -0.75	4025 2.47	79041	Н	2.477966	-1.611094	-1.544075
Н 1.	.525012 -2.01	0019 1.5	16041	Н	2.929999	-0.480107	-2.822075
Н 3.	171009 -2.27	0032 2.15	51041	Н	4.184980	-1.144145	-1.748075
C 2.	065028 0.05	9977 -0.16	64959	С	1.525043	0.981934	-0.990075
O 2.	.041037 1.24	6977 0.13	38041	0	0.785034	0.667956	-1.910075
N 1.	178023 -0.50	6016 -1.04	40959	Ν	1.210071	1.946944	-0.082075
Н 1.	143015 -1.51	6016 -1.0	63959	Н	1.844076	2.100925	0.687925
C -0.	.061971 0.17	1994 -1.3	51959	С	-0.080908	2.622982	-0.097075
Н 0.	160037 1.23	1992 -1.49	95959	Н	-0.099887	3.332982	0.733925
Н -0.	472974 -0.22	6003 -2.2	86959	Н	-0.210892	3.174986	-1.031075
C -1.	106973 -0.01	8998 -0.24	41959	С	-1.310936	1.696018	0.009925
0 -1.	.116981 -1.02	1998 0.4	62041	0	-2.309929	1.927048	-0.652075
N -1.	.993965 1.01	2009 -0.09	94959	Ν	-1.236964	0.746016	0.989925
Н -2.	.070960 1.65	5010 -0.8	72959	Н	-0.308972	0.476989	1.289925
C -3.	.222966 0.81	2019 0.65	57041	С	-2.299994	-0.248952	1.198925
Н -2.	.958971 0.19	3017 1.5	19041	Н	-1.892014	-0.946964	1.940925
C -3.	.788956 2.16	0023 1.12	22041	С	-3.578975	0.378086	1.752925
Н -4.	.052951 2.78	3025 0.20	60041	Н	-3.993954	1.083098	1.032925
Н -4.	.693957 2.01	4030 1.7	17041	Н	-4.320998	-0.400892	1.934925
Н -3.	.050951 2.69	3017 1.72	27041	Н	-3.362960	0.899079	2.690925
С -4.	.255972 0.07	6027 -0.22	22959	С	-2.594019	-1.095944	-0.069075
O -4.	.301970 0.26	8027 -1.4	32959	0	-3.741027	-1.374910	-0.399075
N -5.	.132978 -0.71	4966 0.4	55041	Ν	-1.485033	-1.584976	-0.691075
Н -4.	.940980 -0.91	6968 1.42	25041	Н	-0.580023	-1.232003	-0.414075
С -6.	181984 -1.46	7958 -0.2	13959	С	-1.568055	-2.301974	-1.950075
Н -5.	954993 -2.53	9960 -0.2	39959	Н	-1.128037	-1.715987	-2.764075
Н -7.	.142983 -1.32	0950 0.23	88041	Н	-1.050083	-3.265989	-1.887075
Н -6.	246981 -1.09	7957 -1.2	36959	Н	-2.623060	-2.478943	-2.162075

Table S4 continued

	βα	onformer		
Н	-6.373048	-2.115944	0.936000	
С	-6.407027	-1.030943	0.811000	
Н	-6.364018	-0.555944	1.795000	
Н	-7.362022	-0.786924	0.339000	
С	-5.283019	-0.611965	-0.123000	
0	-5.193027	-1.046967	-1.265000	
Ν	-4.394001	0.289017	0.399000	
Н	-4.447996	0.549019	1.374000	
С	-3.221992	0.749995	-0.335000	
Н	-3.258002	0.229995	-1.295000	
С	-3.242962	2.266995	-0.548000	
Н	-3.200952	2.783994	0.415000	
Н	-2.379956	2.585978	-1.141000	
Н	-4.154957	2.559013	-1.075000	
С	-1.982000	0.342970	0.477000	
0	-1.774991	0.820966	1.590000	
N	-1.183019	-0.597045	-0.097000	
Н	-1.383025	-0.928041	-1.031000	
С	0.035972	-1.076069	0.531000	
Н	0.092981	-0.602070	1.512000	
Н	-0.005049	-2.164068	0.661000	
С	1.232978	-0.760093	-0.372000	
0	1.327968	-1.280094	-1.481000	
N	2.112996	0.154890	0.115000	
Н	2.008003	0.509892	1.055000	
С	3.309004	0.567867	-0.616000	
Н	3.287993	0.000867	-1.550000	
С	3.299034	2.072867	-0.904000	
Н	3.330045	2.633866	0.033000	
Н	4.176039	2.354850	-1.496000	
Н	2.399039	2.345885	-1.461000	
С	4.526997	0.196843	0.246000	
0	4.715008	0.747839	1.326000	
N	5.328978	-0.778173	-0.261000	
H	5.060969	-1.216168	-1.130000	
С	6.491968	-1.283196	0.448000	
Н	6.353948	-2.328193	0.749000	
Н	7.390969	-1.211213	-0.173000	
Н	6.620980	-0.671198	1.341000	

	$\beta_a c$	onformer		α_{R} conformer
Н	7.073917	1.644016	-0.555080	Н -1.648188 -2.477936 3.123037
С	6.852928	0.847013	0.158920	C -2.260205 -2.791904 2.276037
Н	6.658922	1.288010	1.140920	Н -3.314195 -2.608847 2.501037
Н	7.739936	0.211024	0.223920	Н -2.110263 -3.868912 2.146037
С	5.696938	0.016998	-0.380080	C -1.772167 -2.078930 1.028037
0	5.740945	-0.518001	-1.484080	O -0.575161 -1.970994 0.766037
Ν	4.619939	-0.094016	0.449920	N -2.739138 -1.543878 0.223037
Н	4.580933	0.390984	1.335920	Н -3.701151 -1.781826 0.425037
С	3.414949	-0.814031	0.071920	C -2.445113 -1.077894 -1.135963
Н	3.413949	-0.869031	-1.021080	Н -2.025157 -1.899916 -1.725963
С	3.379967	-2.237031	0.654920	C -3.724086 -0.565825 -1.803963
Н	3.395966	-2.199031	1.747920	Н -4.163041 0.270198 -1.248963
Н	2.474973	-2.767043	0.338920	Н -3.498067 -0.222837 -2.815963
Н	4.249974	-2.796020	0.302920	Н -4.471129 -1.363785 -1.877963
С	2.224938	0.002954	0.589920	C -1.337056 -0.006953 -1.151963
0	2.233932	0.476954	1.724920	O -0.429059 -0.060002 -1.970963
N	1.194936	0.165941	-0.280080	N -1.464002 0.996054 -0.241963
Н	1.204942	-0.271059	-1.193080	Н -2.322998 1.071100 0.287037
С	-0.058072	0.800925	0.092920	C -0.569940 2.149006 -0.226963
Н	-0.136072	0.776924	1.182920	Н -0.634910 2.708009 -1.164963
С	-0.092090	2.264925	-0.365080	C -0.949891 3.065026 0.932037
Н	0.750903	2.789935	0.105920	Н -0.939922 2.495026 1.874037
Н	0.039909	2.296926	-1.456080	Н -0.190849 3.854986 1.003037
0	-1.348097	2.794909	0.034920	O -2.239863 3.601095 0.651037
Н	-1.383109	3.722908	-0.225080	Н -2.470830 4.216108 1.358037
С	-1.184062	0.001911	-0.579080	C 0.915038 1.736926 -0.085963
0	-1.058057	-0.372087	-1.747080	O 1.787070 2.337880 -0.691963
N	-2.255058	-0.288103	0.191920	N 1.162988 0.813913 0.894037
Н	-2.358063	0.123896	1.110920	Н 0.392955 0.198954 1.138037
С	-3.428049	-0.976118	-0.331080	C 2.509959 0.274841 1.100037
Н	-3.412051	-0.847117	-1.418080	Н 3.176004 1.116805 1.300037
C	-3.408030	-2.475117	0.007920	C 2.502908 -0.686159 2.292037
Н	-3.410029	-2.614117	1.091920	H 1.818863 -1.523122 2.116037
Н	-4.285024	-2.980128	-0.410080	H 3.507886 -1.087213 2.446037
Н	-2.509025	-2.934106	-0.411080	H 2.194936 -0.165142 3.205037
С	-4.656058	-0.304133	0.299920	C 3.135923 -0.400193 -0.143963
0	-4.677061	-0.054133	1.501920	0 4.323932 -0.234256 -0.395963
N	-5.679061	-0.029146	-0.551080	N 2.326876 -1.273149 -0.806963
Н	-5.556059	-0.232144	-1.532080	H 1.333878 -1.246096 -0.620963
C	-6.928069	0.569838	-0.109080	C 2.748842 -1.916172 -2.038963
Н	-7.091081	1.539836	-0.592080	H 3.81/851 -1./36229 -2.157963
H	-7.779061	-0.083173	-0.328080	H 2.567784 -2.996162 -1.993963
Н	-6.855071	0.715839	0.967920	H 2.212864 -1.504143 -2.900963

Table S5 Geometric structures (Å) of the five conformers of ACE-ALA-SER-ALA-NME.

Table S5 continued

:

	PP-II c	onforme	r		$\alpha_L c$	onformer	
Н	-7.257907 -	-0.032979	-1.032012	Н	-2.282900	-2.744957	-2.903963
С	-6.385903 -	0.676973	-0.916012	С	-3.020902	-2.573969	-2.116963
Н	-6.014901 -	-0.932971	-1.915012	Н	-3.280886	-3.548973	-1.691963
Н	-6.673897 -	-1.602975	-0.409012	Н	-3.920910	-2.131984	-2.550963
С	-5.305908	0.087034	-0.167012	С	-2.389916	-1.718959	-1.032963
0	-5.208916	1.305034	-0.214012	0	-1.222914	-1.876940	-0.678963
Ν	-4.457903 -	-0.696961	0.586988	Ν	-3.192932	-0.746972	-0.496963
Н	-4.403897 -	-1.670961	0.313988	Н	-4.172932	-0.786988	-0.738963
С	-3.196906 -	-0.142953	1.052988	С	-2.869943	-0.066967	0.769037
Н	-3.400913	0.890046	1.348988	Η	-3.598957	0.748021	0.861037
С	-2.653901 -	-0.948949	2.241988	С	-2.976928	-0.986968	1.986037
Н	-2.516894 -	-1.997948	1.958988	Н	-2.267915	-1.811957	1.899037
Н	-1.679904 -	-0.566943	2.557988	Н	-2.738937	-0.433965	2.896037
Н	-3.350902 -	-0.901954	3.081988	Н	-3.990922	-1.388985	2.067037
С	-2.156906 -	0.150946	-0.083012	С	-1.477954	0.601056	0.693037
0	-2.157901 -	-1.018946	-0.949012	0	-0.663953	0.497069	1.603037
Ν	-1.226913	0.848060	-0.024012	Ν	-1.249966	1.329060	-0.432963
Н	-1.179916	1.405060	0.818988	Н	-2.025969	1.480047	-1.059963
С	0.022088	0.740068	-0.749012	С	-0.054980	2.154079	-0.617963
Н	-0.216909	0.275066	-1.711012	Н	-0.096986	2.515079	-1.651963
С	0.618079	2.123072	-1.014012	С	-0.033000	3.372080	0.301037
Н	1.490080	2.017078	-1.676012	Н	-0.049994	3.041079	1.346037
Н	-0.139925	2.734067	-1.525012	Н	0.902992	3.915095	0.131037
0	0.996075	2.677074	0.238988	0	-1.181012	4.154061	-0.035963
Н	1.399070	3.539077	0.078988	Н	-1.186025	4.927061	0.541037
С	1.020094 -	0.168926	-0.001012	С	1.244034	1.325101	-0.474963
0	0.994095 -	-0.311926	1.212988	0	2.223026	1.781117	0.100037
Ν	1.896098 -	0.840920	-0.820012	Ν	1.242053	0.149101	-1.166963
Н	1.995096 -	0.465919	-1.756012	Н	0.337059	-0.238914	-1.402963
С	3.144101 -	1.347912	-0.267012	С	2.376068	-0.785881	-1.144963
Н	2.904104 -	-1.738913	0.725988	Н	2.014083	-1.680887	-1.664963
С	3.714109 -	2.459908	-1.157012	С	3.595059	-0.234861	-1.883963
Н	3.954106 -	2.068907	-2.151012	Н	3.957045	0.668145	-1.390963
Н	4.633111 -	2.867902	-0.727012	Н	4.398071	-0.973848	-1.872963
Н	2.986114 -	3.266913	-1.264012	Н	3.329056	-0.001865	-2.919963
С	4.155094 -	0.186905	-0.149012	С	2.755076	-1.250875	0.288037
0	4.166088	0.725095	-0.971012	0	3.925078	-1.360856	0.633037
Ν	5.056095 -	-0.303899	0.863988	Ν	1.698082	-1.640892	1.054037
Н	4.892099 -	-1.009900	1.564988	Η	0.766078	-1.394907	0.747037
С	6.085088	0.692107	1.112988	С	1.861088	-2.006889	2.448037
Н	5.853084	1.300106	1.994988	Η	1.423076	-1.248896	3.107037
Н	7.058091	0.214114	1.258988	Η	1.387104	-2.972897	2.656037
Н	6.129084	1.343108	0.239988	Н	2.930090	-2.083872	2.648037

Table S5 continued

	βο	onformer		
Н	-6 492977	1 986048	-0 190944	
C	-6.486963	0.912048	-0.389944	
H	-6.455961	0.747049	-1.469944	
Н	-7.420957	0.502036	0.005056	
С	-5.324954	0.284064	0.363056	
О	-5.196956	0.406066	1.576056	
Ν	-4.451945	-0.437924	-0.405944	
Н	-4.537945	-0.432925	-1.412944	
С	-3.252936	-1.060908	0.141056	
Н	-3.256940	-0.809908	1.205056	
С	-3.260916	-2.580908	-0.050944	
Н	-3.251912	-2.826908	-1.115944	
Н	-2.375910	-3.032896	0.408056	
Н	-4.151910	-3.011920	0.412056	
С	-2.043945	-0.438892	-0.576944	
0	-1.881943	-0.598890	-1.782944	
Ν	-1.227955	0.329119	0.198056	
Н	-1.360955	0.347117	1.201056	
С	0.003037	0.926136	-0.299944	
Н	0.083041	0.650137	-1.353944	
С	-0.032984	2.449135	-0.165944	
Н	-0.868989	2.841124	-0.762944	
Н	-0.206987	2.701133	0.889056	
О	1.226010	2.930152	-0.617944	
Н	1.294997	3.864153	-0.382944	
С	1.162045	0.355151	0.535056	
0	1.209042	0.568152	1.745056	
N	2.032055	-0.447837	-0.127944	
Н	1.997056	-0.500837	-1.136944	
С	3.190064	-1.061821	0.520056	
Н	3.152059	-0.729822	1.561056	
С	3.131084	-2.589822	0.443056	
Н	3.178089	-2.913821	-0.598944	
Н	3.979090	-3.033810	0.975056	
Н	2.205089	-2.955834	0.895056	
С	4.44/05/	-0.539804	-0.195944	
0	4.663061	-0.835801	-1.36/944	
N	5.256046	0.262207	0.547056	
Н	4.954042	0.516203	1.476056	
C	6.448037	0.890223	0.002056	
H	6.321023	1.9/4221	-0.094944	
H	/.518040	0.690235	0.007044	
H	6.616043	0.465225	-0.98/944	

References

- 1 S. Grimme, J. Chem. Phys., 2003, 118, 9095.
- 2 H.-J. Werner, T. B. Adler and F. R. Manby, J. Chem. Phys., 2007, 126, 164102.
- 3 K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, *Chem. Phys. Lett.* 1989, **157**, 479.
- 4 H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh,
- A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson and M. Wang MOLPRO, Version 2010.1, A Package of Ab Initio Programs.
- 5 O. Vahtras, J. Almlöf, M. W. Feyereisen, *Chem. Phys. Lett.* 1993, **208**, 359; S. Ten-no and F. R. Manby, *J. Chem. Phys.*, 2003, **119**, 5358.
- 6 T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007.
- 7 S. Ten-no, Chem. Phys. Lett., 2004, 398, 56.
- 8 K. A. Peterson, T. B. Adler and H.-J. Werner, J. Chem. Phys. 2008, 128, 084102.
- 9 A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen and A. K. Wilson, *Chem. Phys. Lett.* 1998, 286, 243.
- 10 J. G. Hill, K. A. Petersen, G. Knizia and H.-J. Werner, J. Chem. Phys. 2009, 131, 194105.
- 11 P. Jurečka and P. Hobza, Chem. Phys. Lett., 2002, 365, 89.
- 12 L. Goerigk and S. Grimme, Phys. Chem. Chem. Phys., 2011, 13, 6670.
- 13 A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
- 14 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 15 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 16 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.
- 17 Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656.
- 18 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
- 19 S. Grimme, J. Chem. Phys., 2003, 118, 9095.
- 20 A. Karton, A. Tarnopolsky, J.-F. Lamère, G. C. Schatz and J. M. L. Martin, *J. Phys. Chem. A*, 2008, **112**, 12868.
- 21 L. Goerigk and S. Grimme, J. Chem. Theory Comput., 2011, 7, 291.
- 22 S. Kozuch and J. M. L. Martin, Phys. Chem. Chem. Phys. 2011, 13, 20104.
- 23 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
- Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
- A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T.
Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg,
S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox,
GAUSSIAN 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2010.

- 24 F. Neese, ORCA Version 2.9, Max-Planck-Institute for Bioinorganic Chemistry, D-45470, Muelheim/Ruhr, Germany, 2012.
- 25 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 26 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
- 27 DFT-D3 website by the group of Prof. Stefan Grimme: http://www.thch.uni-bonn.de/tc/.
- 28 L. Goerigk, H. Kruse, S. Grimme, Chem. Phys. Chem., 2011, 12, 3421.
- 29 R. Izsak, R. and F. Neese, J. Chem. Phys. 2011, 135,144105.
- 30 J. Jiang, Y. Wu, Z.-X. Wang and C. Wu, J. Chem. Theory Comput., 2010, 6, 1199.