Supplementary Information

Individual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquids

Nishar Hameed¹*, Nisa V. Salim¹, Tracey L. Hanley², Mrunali Sona¹, Qipeng Guo¹* and Bronwyn L. Fox

¹Institute for Frontier Materials, Deakin University, Geelong, Vic, 3216, Australia ²Institute Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia

Optimization of IL amount as dispersion-curing agent. In this study we have investigated the use of IL a curing agent for epoxy resin as well as a dispersion agent for MWCNTs. The amount of IL was a significant challenge as we have to find the right balance of these two requirements and there were no previous similar studies of epoxy curing using a combination of IL and amine curing agent. The amount of BMMIBF₄ was chosen based on a number of repeated sample preparation and characterisation steps. We have prepared epoxy thermosets with a wide range of BMMIBF₄/4,4'-methylenedianiline (MDA) combinations as curing agent. Thermosets containing 0.1 up to 1 wt% BMIMBF₄ with respect to epoxy was prepared and a stoichiometric amount of MDA was used in all the cases. We have examined the glass transition and tensile mechanical properties of these thermosets. Based on these physical properties 0.5wt% IL was optimized as amount of BMMIBF₄ that provides a mechanically and thermally strong matrix for CNT dispersion. Moreover this study focus on the preparation of composites with low MWCNT loading (0.1 to 1wt%). The experimental results are given in Table S1.

Differential Scanning Calorimetry. DSC experiments were performed using 5–10 mg of the samples under an atmosphere of nitrogen gas with a TA-DSC model Q200 instrument. The samples were first heated to 100 °C and held at that temperature for 5 min to remove the thermal history. Then, the samples were cooled to -80 °C at the rate of 20 °C / min, held for 5 min, and again heated from -80 to 250 °C at 20 °C / min (second scan). The T_g values were taken as the midpoint of the transition in the second scan of the DSC thermograms.

Thermogravimetry analysis. Thermogravimetry analyses (TGA) were performed on Netzsch STA 409 thermogravimetric analyser over a temperature range of 25–600 °C at a heating rate of 10 °C /min. The measurement was performed using 5–10 mg of the sample under an atmosphere of nitrogen gas. The decomposition temperature (T_d) was obtained from the onset value of the weight loss curve.

Wt% of BMMIBF ₄ in epoxy	Tensile Strength (MPa)	Tensile Strain (%)	T _g (DSC) °C
0	50.12 ± 2	4.87	172
0.1	50.9 ± 2	4.98	173
0.2	51.32 ± 1	5.10	175
0.3	52.87 ± 2	5.46	178
0.4	54.11 ± 1	5.89	181
0.5	55.68 ± 2	6.17	183
0.6	53.11 ± 2	6.16	180
0.7	51.86 ± 3	6.08	175
0.8	49.54 ± 3	5.98	169
0.9	47.01 ± 2	5.55	163
1	43.89 ± 4	5.05	154

Table S1. The tensile mechanical and glass transition of properties of thermosets using various amounts of BMIMBF₄.

Figure S1. The T_g -composition plots of epoxy+BMIMBF₄+MWCNT composites obtained from DSC.

Figure S2. Thermogravimetric curves of composites; 1 - 0 wt%, 2 - 0.1 wt%, 3 - 0.5 wt%, 4 - 1 wt% MWCNT reinforced epoxy composites.

Table S2. Comparison of Epoxy/CNT composites prepared using various methods to

 improve the thermo-mechanical properties.

		Maximum Gain					
Epoxy	Method of	$T_{\rm g}$	Storage	Young's	Tensile	Tensile	K_{1C}
Composite	dispersion/preparation	(°C)	Modulus	Modulus	Strength	Elongation	(%)
			(%)	(%)	(%)	(%)	

Epoxy/	Modified polydimethylsiloxanes						
MWCNT ²⁶	based block			17	-8	-38	
	copolymer dispersion						
Epoxy/ MWCNT ²⁷	COOH-functionalized MWCNTs/ ultrasonication	0	20				
Epoxy/	Ozone treatment/						52
MWCNT ²⁸	high-speed mixer/ three-roll mill	2		3	23	100	
Epoxy/ MWCNT ²⁹	High intensity sonication/ice bath		25	0			40
Epoxy/ MWCNT ³⁰	Amine functionalization of MWCNT	- 20					
Epoxy/DW	Amine						
CNT ²⁹	Functionalization/high			14	8		43
Epoxy/MW	shear mixing Amine Functionalization/high			0	<i>c</i> 1		20
CNT	shear mixing			7	$\smallsetminus 1$		50
Epoxy/ MWCNT ³²	Acetone dispersion/ ultrasonication/ high pressure homogenizer/ high shear mixer/ three-roll milling						80

Epoxy/SW CNT ³³	Functionalized with polyamidoamine generation-0 dendrimer/ Acetone			26	15	2	17
Epoxy/MW CNT ³⁴	Acetone/Non-ionic surfactant (Tergitol) dispersion	- 4					
Epoxy/MW CNT (present study)	IL/sonication	9	48	13	23	36	95