## **Supporting information**

of

## An advanced, highly efficient sodium-ion rechargeable battery

by

Seung-Min Oh,<sup>c,e</sup> Seung-Taek Myung,<sup>b,e</sup> Min-Woo Jang,<sup>a</sup> Bruno Scrosati<sup>d,\*</sup>, Jusef Hassoun\* and Yang-Kook Sun<sup>a,c,\*</sup>

<sup>a</sup>Department of WCU Energy Engineering, Hanyang University, Seoul 133-791, South Korea

<sup>b</sup>Department of Nano Engineering, Sejong University, Seoul 143-747, South Korea

<sup>c</sup>Department of Chemical Engineering, Hanyang University, Seoul 133-791, South

Korea

<sup>d</sup>Department of Chemistry, University of Rome Sapienza 00185, Rome, Italy.

<sup>e</sup>*These Authors equally contributed to the work.* 

\*Corresponding authors: bruno.scrosati@uniroma1.it, jusef.hassoun@uniroma1.it, yksun@hanyang.ac.kr



**Figure S-1.** Discharge capacity versus cycle number within 2.2 V-4.0 V and 2.2 V-4.2 V, respectively, voltage limits of the Na/ Na(Ni<sub>0.5</sub>Mn<sub>0.5</sub>)O<sub>2</sub> cell at room temperature (Current density: 12 mA g<sup>-1</sup>, electrolyte: 1.0M NaClO<sub>4</sub> in PC with 2 vol% FEC).

Figure S-1 exhibits continuous capacity delivery versus cycle numbers at two cut-off voltage limits of the Na/ Na(Ni<sub>0.5</sub>Mn<sub>0.5</sub>)O<sub>2</sub> cell. At 4.0 V voltage limit the capacity retention is about 93 % of the initial value. At 4.2 V voltage limit the deliver capacity is higher but the retention is much lower, i.e., passing from 155 mAh g<sup>-1</sup> to about 90 mAh g<sup>-1</sup> over the cycling test.



**Figure S-2.** Differential scanning calorimetry traces showing heat flow from the reaction of the electrolyte with a fully charged cell Na/ Na(Ni<sub>0.5</sub>Mn<sub>0.5</sub>)O<sub>2</sub> cell at two different cut-off voltages (2.2 V-4.0 V and 2.2 V-4.2 V).

Figure S2 shows differential scanning calorimeter (DSC) profiles of two  $Na_{\delta}(Ni_{0.5}Mn_{0.5})O_2$  electrodes, one fully charged to 4.0 V ( $Na_{0.375}Ni_{0.5}Mn_{0.5}O_2$ ) and the other at 4.2 V ( $Na_{0.021}Ni_{0.5}Mn_{0.5}O_2$ ), both wetted with the NaClO<sub>4</sub> PC-FEC electrolyte. For the former, the onset temperature for the exothermic reaction is around 250 °C while the main reaction occurs at 265 °C along with a total associated heat of 567.1 J g<sup>-1</sup>. As expected, the reaction shifts to the lower temperature of about 234 °C for the electrode fully charged to 4.2 V and the total associated heat increases to 795.6 J g<sup>-1</sup>. Considering the high oxidation state of Ni, which is close to +4, the relatively low heat generation of 795.6 J g<sup>-1</sup> is notable and better than that associated with the general class of delithiated transition metal oxides.