Revised Manuscript ID: CP-ART-10-2012-043511

Supporting information

Molecular Reactivity Dynamics in a Confined Environment

Munmun Khatua^a and Pratim Kumar Chattaraj*^a

^aDepartment of Chemistry and Center for Theoretical Studies,

Indian Institute of Technology Kharagpur,

Kharagpur 721302, West Bengal, India.

*Author for correspondence: email : <u>pkc@chem.iitkgp.ernet.in</u>

Figure S1: Time evolution of chemical hardness (η) during a collision process between H⁺ and N₂ molecule in ground state (GS) and excited state (ES) in a confined environment (length of cylinder = 6.0a.u. denotes unconfined system in GS and 7.2a.u. in ES).

Figure S2: Time evolution of polarizability (α) during a collision process between H⁺ and N₂ molecule in ground state (GS) and excited state (ES) in a confined environment (length of cylinder = 6.0a.u. denotes unconfined system in GS and 7.2a.u. in ES).

Figure S3: Plots of η_{max} vs. length of cylinder and α_{min} vs. length of cylinder during a collision process between H⁺ and N₂ molecule in GS and ES.

Figure S4: Time evolution of chemical hardness (η) when N₂ molecule in ground state (GS) and first excited state (ES) is placed in an external field of amplitude $\varepsilon_0 = 0.01a.u.$ & 100a.u. and frequency $\omega_0 = \pi$.

Figure S5: Plot of $\eta(t = 2)$ vs. length of cylinder when N₂ molecule in GS and in first ES is placed in an external field ($\varepsilon_0 = 0.01a.u. \& 100a.u.$ and $\omega_0 = \pi$).

Figure S6: Time evolution of polarizability (α) when N₂ molecule in ground state (GS) and first excited state (ES) is placed in an external field of amplitude $\varepsilon_0 = 0.01$ a.u. & 100 a.u. and frequency $\omega_0 = \pi$.

Figure S7: Plot of α_{\min} vs. length of cylinder when N₂ molecule in GS and in first ES is placed in an external field ($\varepsilon_0 = 0.01a.u. \& 100a.u.$ and $\omega_0 = \pi$).

Figure S8: Time evolution of chemical potential (μ) when N₂ molecule in ground state (GS) and first excited state (ES) is placed in an external field of amplitude $\varepsilon_0 = 0.01a.u.$ & 100a.u. and frequency $\omega_0 = \pi$.

Figure S9: Plot of $\mu(t = 2)$ vs. length of cylinder and $\mu(amp)$ vs. length of cylinder when N₂ molecule in GS and in first ES is placed in an external field ($\varepsilon_0 = 0.01a.u. \& 100a.u.$ and $\omega_0 = \pi$).

Figure S10: Time evolution of electrophilicity index (ω) when N₂ molecule in ground state (GS) and first excited state (ES) is placed in an external field of amplitude $\varepsilon_0 = 0.01$ a.u. & 100 a.u. and frequency $\omega_0 = \pi$.

Figure S11: Plot of $\omega(t = 2)$ vs. length of cylinder and $\omega(amp)$ vs. length of cylinder when N₂ molecule in GS and in first ES is placed in an external field ($\varepsilon_0 = 0.01a.u.$ & 100a.u. and $\omega_0 = \pi$).

Figure S12: Time evolution of chemical hardness (η) during a collision process between H⁺ and CO molecule in ground state (GS) and excited state (ES) in a confined environment (length of cylinder = 6.0a.u. denotes unconfined system in GS and 7.2a.u. in ES).

Figure S13: Time evolution of polarizability (α) during a collision process between H⁺ and CO molecule in ground state (GS) and excited state (ES) in a confined environment (length of cylinder = 6.0a.u. denotes unconfined system in GS and 7.2a.u. in ES).

Figure S14: Plots of η_{max} vs. length of cylinder and α_{min} vs. length of cylinder during a collision process between H⁺ and CO molecule in GS and ES.

Figure S15: Time evolution of chemical hardness (η) when CO molecule in ground state (GS) and excited state (ES) is placed in an external field of amplitude $\varepsilon_0 = 0.01a.u.$ & 100a.u. and frequency $\omega_0 = \pi$.

Figure S16: Plot of $\eta(t = 2)$ vs. length of cylinder when CO molecule in GS and ES is placed in an external field ($\varepsilon_0 = 0.01a.u. \& 100a.u.$ and $\omega_0 = \pi$).

Figure S17: Time evolution of polarizability (α) when CO molecule in ground state (GS) and excited state (ES) is placed in an external field of amplitude $\varepsilon_0 = 0.01$ a.u. & 100 a.u. and frequency $\omega_0 = \pi$.

Figure S18: Plot of α_{\min} vs. length of cylinder when CO molecule in GS and ES is placed in an external field ($\varepsilon_0 = 0.01$ a.u. & 100 a.u. and $\omega_0 = \pi$).

Figure S19: Time evolution of chemical potential (μ) when CO molecule in ground state (GS) and excited state (ES) is placed in an external field of amplitude $\varepsilon_0 = 0.01a.u.$ & 100a.u. and frequency $\omega_0 = \pi$.

Figure S20: Plot of $\mu(t = 2)$ vs. length of cylinder and $\mu(amp)$ vs. length of cylinder when CO molecule in GS and ES is placed in an external field ($\varepsilon_0 = 0.01a.u. \& 100a.u. and \omega_0 = \pi$).

Figure S21: Time evolution of electrophilicity index (ω) when CO molecule in ground state (GS) and excited state (ES) is placed in an external field of amplitude $\varepsilon_0 = 0.01a.u.$ & 100a.u. and frequency $\omega_0 = \pi$.

Figure S22: Plot of $\omega(t = 2)$ vs. length of cylinder and $\omega(amp)$ vs. length of cylinder when CO molecule in GS and ES is placed in an external field ($\varepsilon_0 = 0.01a.u. \& 100a.u. and \omega_0 = \pi$).