The C–I····X⁻ halogen bonding of tetraiodoethylene with halide anions in solution and cocrystals investigated by experiment and calculation

Hui Wang, Xiao Ran Zhao and Wei Jun Jin*

College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

Tel/Fax: (+86)10-58802146, E-mail: wjjin@bnu.edu.cn

Supporting Information

In solution

The deriving process of the formula:

If the complexes have 1:n binding stoichiometry, the equilibrium can be described as in equation:¹

 $[D] + n[A] \Longrightarrow DA_n$

The equilibrium constant (K_a) is then expressed as

$$K_{a} = \frac{\mathrm{DA}_{n}}{\mathrm{[D]} \mathrm{[A]}^{n}} \tag{1}$$

According to the conservation of mass

$$[D] + [DA_n] = [D]_0$$
(2)
[A] + n[DA_n] = [A]_0 (3)

If $[A]_0 >> [D]_0$, the equation (3) can be replaced with $[A]=[A]_0$.

Rearrange the resulting equation, and the relation is obtained:

$$[DA_{n}] = \frac{K_{a} [D]_{0} [A]_{0}^{n}}{1 + K_{a} [A]_{0}^{n}}$$
(4)

Where $[D]_{0}$, $[A]_{0}$ is the initial concentration of donor and acceptor, $[DA_{n}]$ is the equilibrium concentration of the formed XB complexes. In the process of UV-Vis titration acetonitrile as a typical solvent, the total absorbance (Abs) of the various absorption species in solution can be expressed as:

$$Abs = \varepsilon_{D}b[D] + \varepsilon_{DAn}b[DA_{n}] + \varepsilon_{A}b[A]$$
$$= \varepsilon_{D}b([D]_{0} - [DA_{n}]) + \varepsilon_{DAn}b[DA_{n}] + \varepsilon_{A}b([A]_{0} - n[DA_{n}])$$
$$= \varepsilon_{D}b[D]_{0} - \varepsilon_{D}b[DA_{n}] + \varepsilon_{DAn}b[DA_{n}] + \varepsilon_{A}b[A]_{0} - n\varepsilon_{A}b[DA_{n}]$$
$$= \varepsilon_{D}b[D]_{0} + \varepsilon_{A}b[A]_{0} + (\varepsilon_{DAn} - \varepsilon_{D} - n\varepsilon_{A})b[DA_{n}]$$
If $Abs_{0} = \varepsilon_{D}b[D]_{0} + \varepsilon_{A}b[A]_{0}$
$$\Delta Abs = Abs - Abs_{0} = (\varepsilon_{DAn} - \varepsilon_{D} - n\varepsilon_{A})b[DA_{n}] = \Delta\varepsilon b[DA_{n}]$$

After the arrangement,

 $\frac{b[D]_0}{\Delta Abs} = \frac{1}{K_a \varepsilon [A]_0^n} + \frac{1}{\varepsilon}$ (5)

So, $K_{\rm a}$ and ε can be obtained by the double-reciprocal curve (5).

Fig. S1 Plots of $[TIE]b/\Delta Abs vs. 1/[Cl⁻]ⁿ in the differential spectrophotometric method.$

In cocrystal

compound reference	TIE	TIE/Cl ⁻	^a TIE/Br ⁻	^b TIE/Br ⁻	TIE/I ⁻
chemical formula	C_2I_4	$C_{22}H_{36}ClI_{12}N$	$C_{22}H_{36}BrI_{12}N$	C ₁₈ H ₃₆ BrI ₄ N	C ₁₈ H ₃₆ I ₅ N
formula Mass	531.62	1872.77	1917.23	853.99	900.98
crystal system	Monoclinic	Tetragonal	Tetragonal	Triclinic	Triclinic
<i>a</i> /Å	14.979(3)	15.9134(8)	16.0167(7)	13.4297(11)	9.003(3)
<i>b</i> /Å	4.3028(8)	15.9134(8)	16.0167(7)	14.0614(12)	9.062(3)
c/Å	12.748(2)	17.0463(18)	17.0905(15)	15.1348(13)	19.036(7)
$\alpha ^{\prime \circ}$	90.00	90.00	90.00	98.1200(10)	81.642(6)
$eta /^{\circ}$	108.508(3)	90.00	90.00	101.3600(10)	80.716(6)
$\gamma^{\prime \circ}$	90	90.00	90.00	106.2410(10)	64.652(6)
unit cell volume/Å ³	779.1(3)	4316.7(5)	4384.3(5)	2631.1(4)	1380.0(9)
temperature/K	110(2)	110(2)	120(2)	110(2)	110(2)
space group	P2(1)/c	I4/mmm	I4/mmm	P-1	P-1
No. of formula units per unit cell, Z	4	4	4	4	2
No. of reflections measured	3335	10965	10712	13160	6588
No. of independent reflections	1393	1148	1161	9423	4768
R _{int}	0.0315	0.0425	0.0401	0.0214	0.0613
final R_I values $(I > 2\sigma(I))$	0.0397	0.0517	0.0513	0.0337	0.0778
final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0886	0.1305	0.1363	0.0699	0.2239
final R_I values (all data)	0.0413	0.0571	0.0557	0.0435	0.0911
final $wR(F^2)$ values (all data)	0.0893	0.1342	0.1406	0.0742	0.2441

Table S1 Cocrystal data and structure refinement of TIE/X⁻ complexes

^a from acetonitrile, dichloromethane and the mixture of dichloromethane-ethanol (5:1), respectively. ^b from acetone, others from the four different solvents.

Table S2 Component and bonding stoichiometries of TIE/X ⁻ cocrysta

	•		0		-				
cocrystals	TIE/Cl ⁻			TIE/Br				TIE/I	
	from 4 solv	rents		from acetone	from other	3 solvents		from 4 so	lvents
component			3:1	1:1			3:1		1:1
	$C - I \cdots Cl^{-}$		2:1		C–I···Br		2:1		
bonding	$C-I\cdots\pi$		1:1	C-I···Br 1:1	$C-I\cdots\pi$		1:1	$C - I \cdots I^{-}$	1:1
	$C – I \cdots I – C$	type-I	1:1		C–I···I–C	type-I	1:1		
		type-II	1:2			type-II	1:2		

interactions	d/Å	$\theta / ^{\circ}$
C–1I···1Br	3.354(1) (-14.7%)	170.3(1)
C–1I′···1Br	3.354(1)	158.7(0)
C–4I…1Br	3.321(1) (-15.5%)	174.2(1)
C-4I'…1Br-	3.321(1)	159.1(0)
C–6I…1Br	3.318(0) (-15.6%)	166.4(1)
C–6I′…1Br ⁻	3.318(0)	162.5(0)
C-3I···2Br	3.312(0) (-15.7%)	165.0(0)
C-3I'···2Br	3.312(0)	160.0(1)
C–5I···2Br	3.489(1) (-11.2%)	163.7(1)
C-5I'···2Br	3.489(1)	160.6(0)
C-8I···2Br	3.198(1) (-18.6%)	160.0(1)
C-8I'···2Br	3.198(1)	174.4(0)
C-2I2IC	3.915(0) (-1.1%)	177.0(1)
C-2I'…2I-C	3.915(0)	155.3(1)
C–7I····7I–C	3.829(1) (-3.3%)	154.2(0)
C–7I′…7I–C	3.829(1)	165.7(0)
C-1H····1Br	2.963(0) (-5.9%)	139.2(0)
C-2H···1Br	2.864(0) (-9.0%)	161.2(1)
C–3H····1I–C	3.125(0) (-1.7%)	145.3(1)
C−4H···1I−C	3.178(0) (-0.06%)	141.8(1)
C–5H···3I–C	3.145(0) (-1.1%)	124.7(1)
C–6H…8I–C	3.168(0) (-0.38%)	156.4(0)
С–7Н…8І–С	3.150(0) (-0.94%)	145.5(0)

Table S3 Bonding properties and geometrical parameters of TIE/Br⁻ cocrystal prepared from acetone

The information about disordered TIE molecules

The two TIE molecules at different statistical site can well overlap crossly together in the disorder TIE/Cl⁻ or TIE/Br⁻ cocrystal structures, in which the lengths of C–I covalent bond are largely influenced by the kind of interactions, as shown in Fig. 4(e). In the prismatic assignment (3.573×3.573 Å) of two disordered TIEs, there are two kinds of XB (C–I···Br⁻ and C–I···I–C) interaction, the stronger XB (the former) leads to the length of C–I covalent bond (2.173Å) longer, and the weaker XB (the latter) leads to the length of C-I covalent bond (2.069Å) shorter. In the square assignments (3.565×3.565 Å or 3.547×3.547 Å) of two disordered TIEs, only C–I···π or C–I···I–C interactions exist in a TIE, leading to the equal length of four C–I covalent bonds. In terms of the length of C–I covalent bond, the strength of C–I···Br⁻ and C–I···π XB interactions are stronger than the C–I···I–C contact.

Fig. S2 Single-crystal structures of the TIE/Cl⁻ cocrystal. (a) the crystal cell, (b) 2D-network (formed by C-I···Cl⁻, C-I··· π and type-II contacts in layer), (c) 3D-structure (connected by type-I contacts between layer-layer), (d) the arranging of two disordered TIE molecules in the TIE/Cl⁻ cocrystal.

Fig. S3 Single-crystal structures of the TIE/Br⁻ cocrystal prepared from acetone. (a) the crystal cell, (b) 2D-network (c) 3D-structure.

The structure of TIE/Br⁻ cocrystal obtained by slowly evaporating acetone is different from others mentioned in the article (the TIE/Br⁻ cocrystal from acetone has almost same cell parameters with ref,² but the XB lengths and angles are somewhat different). The all TIE molecules in TIE/Br⁻ cocrystal are disordered and the chemical composition (TIE/Br⁻) and C–I/Br⁻ bonding stoichiometries are all 1:1. As listed in Table S3, there are six different C–I···Br⁻ distances with twelve different \angle C–I···Br⁻ bonding angles, and two different C–I···I–C distances with four different \angle C–I···I bonding angles. The 2D-network of TIE/Br⁻ are formed by C– I···Br⁻ and C–I···I–C XB interactions (*cf.* Fig. S3 (b)). When the two-dimensional direction is rotated by a certain angle (the below), it also can be seen clearly that the TIE molecules and Br⁻ locate in a corrugated plane. The 3D structures of TIE/Br⁻ cocrystal are extended by C–H···Br⁻ and C–H···I–C hydrogen bonding interactions (*cf.* Fig. S3 (c), the detailed discussion is described in the following section), which are not included by the previous work.² All these distances are well within the sum of the van der Waals radii.

Fig. S4 Hydrogen bonding of TIE/Br⁻ (prepared from acetone) and TIE/I⁻ cocrystals. (a)-(d): infinite chain structures of TIE/Br⁻ cocrystal formed by C–H…Br⁻ and C–H…I–C interactions; (e) infinite chain structures of TIE/I⁻ cocrystal formed by C–H…I⁻ and C–H…I–C interactions; (f) the 3D structure of the TIE/I⁻ cocrystal.

Fig. S4 (a) to (f) typically shows the C–H····Br⁻, C–H····I and C–H····I interactions. The C–H····Br⁻ distances are 2.864 Å and 2.963 Å (9.0% and 5.9% shorter than the sum of vdW radii of H and Br⁻) with \angle C–H···Br⁻ bonding angles 161.2° and 139.2°, respectively. As listed in Table S3, the five different distances of three types of C–H···I–C (*cf.* Fig. S4 (b), (c) and (d), respectively) in TIE/Br⁻ cocrystal are 3.178 Å, 3.125 Å, 3.145 Å, 3.168 Å and 3.150 Å (0.06%, 1.7%, 1.1%, 0.38% and 0.94% shorter than the sum of vdW radii of H and I) with \angle C–H···I–C bonding angles 141.8°, 145.3°, 124.7°, 156.4° and 145.5°, respectively. In TIE/I cocrystal, the C–H···I–C and C–H···I–C distance of 3.156 Å and 3.118 Å are 0.75% and 7.2% shorter than the sum of vdW radii of H and I/T, respectively. The \angle C–H···I–C and \angle C–H···I–C bonding angles are 155.1° and 157.0°. The 3D structures of TIE/I cocrystal are also extended by hydrogen bonding which are not included by the previous work.² All these distances are well within the sum of the van der Waals radii.

Fig. S5 Raman (left) and FT-IR (right) spectra of TIE as well as TIE/X⁻ cocrystals.

As can be seen from the Fig. S5, the Raman band of v_{C-I} stretching vibration is 779.8 cm⁻¹ for TIE^{3,4}, 772.7 cm⁻¹ for TIE/Cl⁻ cocrystal, 772.7 cm⁻¹ for TIE····Br⁻ cocrystal, 756.2 cm⁻¹ for TIE····I⁻ cocrystal and 754.7 cm⁻¹ for TIE/Br⁻ cocrystal (prepared from acetone). The band in the TIE/X⁻ cocrystal shifts to lower wavenumbers by 8 to 25 cm⁻¹. The FT-IR bands of v_{C-I} /cm⁻¹ stretching vibration generally occur at 524.1, 633.3 and 676.0 for TIE,³ while at 519.9, 622.5 and 666.5 for TIE/Cl⁻ cocrystal, at 519.5, 621.9 and 666.9 for TIE/Br⁻ cocrystal, at 509.4, 608.7 and 652.0 for TIE/T cocrystal, and at 513.5, 605.6 and 655.8 for TIE/Br⁻ cocrystal (prepared from acetone), respectively.

Changes in Raman and FT-IR bands indicate the existence of multiple hydrogen bonding: as shown in Fig. S5, the FT-IR bands of $Bu_4N^+ \cdot \Gamma$ are 1473.4 ~ 1454.1 cm⁻¹, 1405 cm⁻¹ ~ 1363.5 cm⁻¹, 1323.0 cm⁻¹, 1240.0 cm⁻¹ ~ 881.1 cm⁻¹, 794.6 cm⁻¹, 736.7 cm⁻¹, while the corresponding bands of TIE/Bu₄N⁺ · Γ are 1469.6 cm⁻¹, 1380.8 cm⁻¹, 1355.8 cm⁻¹ ~ 1168.7 cm⁻¹, 881.3 cm⁻¹, 738.6 cm⁻¹. Also the Raman active bands of $Bu_4N^+ \cdot \Gamma$ are 1459.7 cm⁻¹, 1395.8 cm⁻¹ ~ 1261.0 cm⁻¹, 1152 cm⁻¹ ~ 1069 cm⁻¹, 907.1 cm⁻¹, 881.2 cm⁻¹, and the corresponding bands of TIE/Bu₄N⁺ · Γ are 1538.9 cm⁻¹, 1453.2 cm⁻¹, 888.4 cm⁻¹ ~ 852.7 cm⁻¹. These may confirm the existence of the C–H… Γ and C–H… Γ -C hydrogen bonds.

Also, for the TIE/Br⁻ cocrystal prepared from acetone, the FT-IR bands of Bu₄N⁺·Br⁻ are 1473.4 ~ 1454.4 cm⁻¹, 1408.0 cm⁻¹ ~ 1365.2 cm⁻¹, 1325.2 cm⁻¹ ~ 883.1 cm⁻¹, 796.6 cm⁻¹, 738.6 cm⁻¹, 530.3 cm⁻¹, while the corresponding bands of TIE/Bu₄N⁺·Br⁻ are 1477.3 cm⁻¹ ~ 1469.5 cm⁻¹, 1379.2 cm⁻¹, 1168.6 cm⁻¹ ~ 927.1 cm⁻¹, 881.5 cm⁻¹, 747.8 cm⁻¹, 736.0 cm⁻¹. Also the Raman active bands of Bu₄N⁺·Br⁻ are 1463.3 cm⁻¹, 1352.6 cm⁻¹ ~ 1317.6 cm⁻¹, 1152.5 cm⁻¹ ~ 1061.7 cm⁻¹, 907.9 cm⁻¹ ~ 603.1 cm⁻¹, and the corresponding bands of TIE/Bu₄N⁺·Br⁻ are 1535.2 cm⁻¹, 1449.6 cm⁻¹, 856.1 cm⁻¹, 754.7 cm⁻¹. These may confirm the existence of the C–H···I–C hydrogen bonds.

Fig. S6 The crystal cell (a) and 2-D network (b) of TIE molecules.

The calculation units of C-I····I⁻ XB energies in cocrystal

The values of the energy were calculated through the unit of 2 molar C–I···Cl⁻/Br⁻ XB for the interaction of C–I···Cl⁻/Br⁻, 1 molar C-I··· π XB for the interaction of C–I··· π . Because of the difference of bond lengths, the values of the energy of C–I··· Γ and C–I···Br⁻ (prepared from acetone) were calculated through the sum of two by two halogen bonds (*cf.* Fig. S7).

Fig. S7 The C–I…I⁻ halogen bonding units extracted from single crystal structure data of TIE/I⁻ for energies calculation.

Fig. S8 Optimized structures of the XB complexes in solution. (a) $TIE\cdots CI^{-}$ complex, (b) $TIE\cdots Br^{-}$ complex, (c) $TIE\cdots I^{-}$ complex.

Fig. S9 The magnitudes of the negative electrostatic potential on the surface Cl^{-} , Br^{-} and I^{-} .

Fig. S10 The calculated electrostatic potential surface of TIE molecule. Blue: positive region; Green: electroneutral region; Red: negative region.

The reason of alert level A in the checkCIF report of TIE/I

This issue may occur due to the existence of C–I \cdots I-C halogen bonding, which cause that the C–I \cdots I-C distance is shorter that twice vdW radii of I.

References

[1] Q. M. Mou, Y. Peng, Z. G. Zhao and S. H. Chen, Chin. J. Org. chem. 2004, 9, 1018-1028.

[2] H. Bock and S. Holl, Z. Naturforsch. 2002, 57b, 713-725.

[3] R. Forneris and M. Uehara, J. Mol. Struct., 1970, 5, 441-447.

[4] The Raman shift at 779.8 cm⁻¹, in fact, is a multiple peak, reflecting the inequality of the C–I covalent bonds and the different interactions in TIE crystal or cocrystals. (*cf.* Fig. S6: TIE crystal).