Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

1 2 3	Electronic Supplementary Information for
	Raman Microspectroscopy and Vibrational Sum Frequency Generation Spectroscopy as Probes of
4	the Bulk and Surface Compositions of Size-Resolved Sea Spray Aerosol Particles†
5	Andrew P. Ault ^{a‡} , Defeng Zhao ^{b§‡} , Carlena J. Ebben ^c , Michael J. Tauber ^b , Franz M. Geiger ^{c*} , Kimberly
6	A. Prather ^{b,d*} , and Vicki H. Grassian ^{a*}
7	^a Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
8	^b Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California,
9	92093, USA.
10	^c Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
11	^d Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California,
12	92093,USA.
13	[§] now at: Institute of Energy and Climate: Troposphere (IEK-8), Forschungszentrum Juelich, Juelich, D-
14	52428, Germany
15	[‡] The first two authors contributed equally to this work.
16	† Electronic supplementary information (ESI) available.
17	Corresponding Authors: Franz M. Geiger, Kimberly A. Prather, and Vicki H. Grassian
18	E-mails: geigerf@chem.northwestern.edu, kprather@ucsd.edu, vicki-grassian@uiowa.edu
19	

20 Raman/EDX Comparison. Figure S1 shows 21 the same particle analyzed with SEM-EDX in 22 Figure 2 of the main text. The Raman data 23 show the presence of vibrational modes due to sulfate, organics and water, with intensity 24 in the $v(SO_4^{2-})$ mode and the v(C-H) and v(O-25 26 H) modes, very similar to those observed in 27 Figure 3 (see text for further details).

28

Figure S1. Raman spectrum of the same particle whose SEM image and energy spectra were shown in Figure 2.

Raman Spectra of Inorganic and Organic 29 30 Reference Compounds. Sulfate and carbonate are 31 two inorganic anion species present in seawater. CaSO₄ and Na₂SO₄ were selected as sulfate 32 references and CaCO₃ as a carbonate reference. 33 Figure S1 shows the frequency of the characteristic 34 35 Raman peak of the symmetric stretch of sulfate $v(SO_4^{2-})$ varies with different cations (Ca²⁺/Na⁺) 36 and provides a potential way to differentiate these 37 38 cations associated with sulfate.

The Raman peaks observed for $CaSO_4$ (1016 cm^{-1}),³⁻⁴ Na₂SO₄ (995 cm⁻¹),⁵⁻⁷ and CaCO₃ (1089 cm^{-1})⁸⁻⁹ are similar to previously published values for these compounds.

Figure S2. Raman spectra of inorganic reference compounds including CaSO₄ and Na₂SO₄ showing $v_1(SO_4^{2-})$ and $v_3(SO_4^{2-})$ modes, as well as CaCO₃ and the $v_1(CO_3^{2-})$ mode.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2013

Salt	Peak frequency (cm ⁻¹)	References	
Na_2SO_4	v ₁ : 992.7	1	
$Na_2SO_4(aq)$	v ₁ : 982	2	
K_2SO_4	v ₁ : 983	10	
MgSO ₄	v ₁ : 1022.8	11	
CaSO ₄	v ₁ :1020	13	
$CaSO_4 \cdot 0.5H_2O$	v ₁ :1012;	14	
CaSO ₄ ·2H ₂ O	v ₁ : 1008	13	

Table S1: Raman peak frequency of the symmetric stretch for sulfate in different compounds.

43

Organic reference 44 compounds 45 include sodium dodecyl sulfate $(CH_3(CH_2)_{11}OSO_3Na)^{12}$ 46 palmitic acid (CH₃(CH₂)₁₄COOH),¹⁵ 47 glycine and (NH₂CH₂COOH),¹⁶⁻¹⁷ 48 and 49 lipopolysaccharides from Escherichia Coli.¹⁸ These species contain some of 50 51 the functional groups that are expected to 52 have similar Raman signatures, as the 53 main species organic in seawater 54 including carbohydrates, lipids. carboxylic acids, peptides, and amines.¹⁹⁻ 55 ²¹ Figure S2 shows that among the organic 56 57 reference compounds studied here, the symmetric/asymmetric stretching modes Lipopolysaccharides from Escherichia Coli) 58

Figure S3. Raman spectra in the C-H stretching region are shown for different organic standards (Sodium Dodecyl Sulfate - CH₃(CH₂)₁₁OSO₃Na, Palmitic Acid $CH_3(CH_2)_{14}COOH,$ Glycine NH₂CH₂COOH,

59 of the CH, CH₂, and CH₃ groups exhibit the most intense Raman signals.

Figure S4. Approximately 20 Raman spectra from single particles on different MOUDI stages, a) $5.6-10.0 \ \mu\text{m}$, b) $2.5-5.6 \ \mu\text{m}$, c) $1.0-2.5 \ \mu\text{m}$, d) $0.53-1.0 \ \mu\text{m}$, e) $0.3-0.53 \ \mu\text{m}$.

-0	a				
78	Supplementary Information References				
/9 00	1	Choi D. K. Loolawood D. L. Salid State Commune 1080 72 (1) 122 127			
00 91	1. 2	Choir, B. K., Lockwood, D. J., Solid State Commun 1989, 72 (1), 155-157. Daly, F. D.: Voster, D. D.: Prown, C. W. J. Phys. Chem. 1072, 76 (24), 2664. \Re			
82	2. 2	Daly, F. F., Kester, D. K., Diowil, C. W., J. Phys. Chem. 1972, 70 (24), 5004- ∞ . Paraphlut P. I.: Dawson, D.: Wilkinson, G. P. Speatroe, Acta Pt. A. Molae, Speatr 1073, 20 (1), 20, 26			
82	5. 1	Jentroch D. V. Bolanz, P. M. Ciobata, V. Kampa, B. Posch, D. Maizlan, J. Donn, J. Vib. Spectrose			
84	4.	2012 61 206-213			
85	5	Tong H I Reid I P Dong I L Zhang Y H <i>I Phys Chem A</i> 2010 , <i>114</i> (46) 12237-12243			
86	6	Fung K H ' Tang I N Appl. Spectrosc. 1991. 45 (5) 734-737			
87	7	Murugan R Ghule A Chang H J. Phys.: Condens. Matter 2000, 12 (5) 677-700			
88	8.	Gunasekaran, S.: Anbalagan, G.: Pandi, S., J. Raman Spectrosc. 2006 , <i>37</i> (9), 892-899.			
89	9.	Andersen, F. A.; Brecevic, L., Acta Chem. Scand. 1991, 45 (10), 1018-1024.			
90	10.	Ishigame, M.; Yamashita, S., Phys Status Solidi B 1983, 116 (1), 49-56.			
91	11.	Wang, A.; Freeman, J. J.; Jolliff, B. L.; Chou, I. M., Geochim. Cosmochim. Acta 2006, 70 (24), 6118-			
92		6135.			
93	12.	Picquart, M., J. Phys. Chem. 1986, 90 (2), 243-250.			
94	13.	Prasad, P. S. R.; Pradhan, A.; Gowd, T. N., Curr. Sci. 2001, 80 (9), 1203-1207.			
95	14.	Xiao, H. S.; Dong, J. L.; Wang, L. Y.; Zhao, L. J.; Wang, F.; Zhang, Y. H., Environ. Sci. Technol. 2008,			
96		42 (23), 8698-8702.			
97	15.	De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L., J. Raman Spectrosc. 2007, 38 (9), 1133-			
98		1147.			
99	16.	Zhu, G. Y.; Zhu, X.; Fan, Q.; Wan, X. L., Spectroc. Acta Pt. A-Molec. Spectr. 2011, 78 (3), 1187-1195.			
100	17.	Takeda, M.; Iavazzo, R. E. S.; Garfinkel, D.; Scheinberg, I. H.; Edsall, J. T., J. Am. Chem. Soc. 1958, 80			
101		(15), 3813-3818.			
102	18.	Kamnev, A. A.; Tarantilis, P. A.; Antonyuk, L. P.; Bespalova, L. A.; Polissiou, M. G.; Colina, M.;			
103		Gardiner, P. H. E.; Ignatov, V. V., J. Mol. Struct. 2001, 563, 199-207.			
104	19.	Aluwihare, L. I.; Repeta, D. J., Mar. Ecol.: Prog. Ser. 1999, 186, 105-117.			
105	20.	Verdugo, P.; Alldredge, A. L.; Azam, F.; Kirchman, D. L.; Passow, U.; Santschi, P. H., Mar. Chem. 2004,			
106	0.1	92 (1-4), 67-85.			
10/	21.	Gibb, S. W.; Mantoura, R. F. C.; Liss, P. S., <i>Global Biogeochem. Cycles</i> 1999 , 13 (1), 161-177.			
108					
109					