## Supplementary deposit.

# The Gas-Phase Reaction of Methane Sulfonic Acid with Hydroxyl Radical without and with Water Vapor

Solvejg Jørgensen<sup>1\*</sup>,Camilla Jensen<sup>1</sup>, Henrik G. Kjaergaard<sup>1</sup> and Josep M. Anglada<sup>2</sup>

<sup>1</sup> Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark.
<sup>2</sup>Department de Química Biològica i Modelització Molecular; IQAC-CSIC, E-08034 Barcelona, Spain

> \*Corresponding author: Email: solvejg @ chem.ku.dk FAX: 45-35320204 Phone: 45-35320334

### Formation of H<sub>2</sub>SO<sub>4</sub>



**Figure S1**. Energy profile for the reaction  $CH_3SO_3H + HO \rightarrow H_2SO_4 + CH_3$  obtained at CCSD(T)-F12a/VDZ-F12//B3LYP/aug-cc-pV(T+d)Z level of theory. The energy includes zero point vibrational energy obtained at B3LYP/aug-cc-pV(T+d)Z level of theory. The reaction coordinate of the transition state TS4 is 607i cm<sup>-1</sup>.

#### Formation of pre-pre reactive complex and transition states.



**Figure S2.** Geometries of the pre-pre-reactive complexes and pre-transition states for the formation of the RC1 and RC2 complexes for the M1 and M2 complexes optimized at B3LYP/aug-cc-pV(T+d)Z level of theory.

#### Rate constants for the reaction between CH<sub>3</sub>SO<sub>3</sub>H•H<sub>2</sub>O and HO

The rate constant for reaction channel like M1+HO  $\rightarrow$  pre-RC1 $\rightarrow$ RC1w $\rightarrow$ PC1w is given by

$$k_i = K_{eq} \left( \frac{k_2 + k_3}{k_2 k_3} \right) k_2$$

Where the  $K_{eq}$  is the equilibrium constant for the formation pre-RC1 from M1+HO,  $k_2$  is the rate constant for the formation of RC1w from pre-RC1 through pre-TS1, and  $k_3$  is the rate constant for the formation of PC1w from RC1w through the TS1aw. In Tables S1 and S2 we have collected the corresponding equilibrium and kinetic constants computed at 298 K.

The rate constants for M1 + HO and M2 + OH leading to the products  $CH_3SO_3 + (H_2O)_2$  are  $2.43 \times 10^{-18}$  and  $1.39 \times 10^{-16}$  cm<sup>3</sup> s<sup>-1</sup> molecule<sup>-1</sup>, respectively. The branching ratio of  $CH_3SO_3 + (H_2O)_2$  is 0.01 and 3 % for M1+HO and M2+HO, respectively. Taking into account that relative abundance of M1 and M2 is 44.2 and 19.0 % we can estimate an effective rate constant of  $0.0001^*0.442^*2.43 \times 10^{-18} + 0.03^*0.19^*1.39 \times 10^{-16} = 5.31 \times 10^{-19}$  cm<sup>3</sup> s<sup>-1</sup> molecule<sup>-1</sup> which is four orders of magnitude lower than the bare reaction (8.31×10<sup>-15</sup> cm<sup>3</sup> s<sup>-1</sup> molecule<sup>-1</sup>).

**Table S1:** Equilibrium constant  $K_{eq}$  (in cm<sup>3</sup> molecule<sup>-1</sup>); tunneling parameters  $\Gamma$ ; rate coefficients  $k_3$ ,  $k_2$  (in s<sup>-1</sup>) and the rate constant  $k_i$  (in cm<sup>3</sup> s<sup>-1</sup> molecule<sup>-1</sup>) for the different reaction pathways at 298.15 K for the reaction between M1 + HO. The overall rate constant ( $k_{TOT}$ ) and branching ratios  $\delta$  (in %) are also included.

| Reaction path    | K <sub>eq</sub>        | Γ <sub>2</sub> | k2 <sup>a</sup>       | Γ <sub>3</sub> | $k_3^a$               | <i>k</i> i             | δ    |
|------------------|------------------------|----------------|-----------------------|----------------|-----------------------|------------------------|------|
| M1→RC1w→TS1aw    | 8.73×10 <sup>-24</sup> | 1.03           | 3.96×10 <sup>12</sup> | 330.8          | 1.43×10 <sup>-3</sup> | 4.14×10 <sup>-24</sup> | 0.0  |
| M1→RC1w→TS2aw    | 8.73×10 <sup>-24</sup> | 1.03           | 3.96×10 <sup>12</sup> | 6.8            | 4.08×10 <sup>4</sup>  | 2.43×10 <sup>-18</sup> | 0.0  |
| M1→RC1w→TS3w     | 8.73×10 <sup>-24</sup> | 1.03           | 3.96×10 <sup>12</sup> | 1.8            | 5.72×10 <sup>6</sup>  | 8.99×10 <sup>-17</sup> | 0.2  |
| M1→RC1w→pre-TS1  | 8.73×10 <sup>-24</sup> | 1.03           | 3.96×10 <sup>12</sup> | 1.03           | 4.99×10 <sup>9</sup>  | 4.48×10 <sup>-14</sup> | 99.8 |
| k <sub>TOT</sub> |                        |                |                       |                |                       | 4.49×10 <sup>-14</sup> |      |

<sup>a</sup> The rate constant is without tunneling coefficient.

**Table S2:** Equilibrium constant  $K_{eq}$  (in cm<sup>3</sup> molecule<sup>-1</sup>); tunneling parameters  $\Gamma$ ; rate coefficients  $k_3$ ,  $k_2$  (in s<sup>-1</sup>) and the rate constant  $k_i$  (in cm<sup>3</sup> s<sup>-1</sup> molecule<sup>-1</sup>) for the different reaction pathways at 298.15 K for the reaction between M2 + HO. The overall rate constant ( $k_{TOT}$ ) and branching ratios  $\delta$  (in %) are also included.

| Reaction path    | K <sub>eq</sub>        | Γ <sub>2</sub> | $k_2^a$               | Γ <sub>3</sub> | $k_3^a$               | k <sub>i</sub>         | δ    |
|------------------|------------------------|----------------|-----------------------|----------------|-----------------------|------------------------|------|
| M2→RC2w→TS1bw    | 3.37×10 <sup>-23</sup> | 1.0            | 1.84×10 <sup>10</sup> | 9.3            | 2.10×10 <sup>-4</sup> | 6.59×10 <sup>-26</sup> | 0.0  |
| M2→RC2w→TS2bw    | 3.37×10 <sup>-23</sup> | 1.0            | 1.84×10 <sup>10</sup> | 6.4            | 5.07×10⁵              | 1.10×10 <sup>-16</sup> | 2.4  |
| M2→RC2w→TS2cw    | 3.37×10 <sup>-23</sup> | 1.0            | 1.84×10 <sup>10</sup> | 2.3            | 3.73×10⁵              | 2.89×10 <sup>-17</sup> | 0.6  |
| M2→RC2w→TS3w     | 3.37×10 <sup>-23</sup> | 1.0            | 1.84×10 <sup>10</sup> | 1.8            | 5.72×10 <sup>6</sup>  | 3.47×10 <sup>-16</sup> | 7.5  |
| M2→RC2w→pre-TS2  | 3.37×10 <sup>-23</sup> | 1.0            | 1.84×10 <sup>10</sup> | 1.0            | 1.22×10 <sup>8</sup>  | 4.13×10 <sup>-15</sup> | 89.5 |
| k <sub>TOT</sub> |                        |                |                       |                |                       | 4.61×10 <sup>-15</sup> |      |

<sup>a</sup> The rate constant is without tunneling coefficient.

#### Anharmonic and Harmonic Frequencies

In order to help for a possible experimental identification of these complexes we have collected in Table S3 the most important calculated stretching frequencies (anharmonic values) and their intensities for M1 to M5 along with the corresponding values for MSA and  $H_2O$ , respectively. The full set of the computed harmonic and anharmonic values can be found in the supplementary material. The M1 and M2 complex differ only in the orientation of the dangling hydrogen atom and consequently both complexes present very similar IR spectra. Our calculations predict a very intense band close to to 2950 cm<sup>-1</sup>, that corresponds to the (S)O-H stretching, and that can be considered as fingerprints for identifying the M1 and M2. Our results also predict that this band is redshifted, with respect the (S)O-H stretching band of MSA, by as much as 653 (635) cm<sup>-1</sup> for M1 (M2) complexes, and their relative intensity is enhanced from 126 up to 1190 km·mol<sup>-1</sup>. These large red-shifts are in agreement with the very short (S)O-H···OH<sub>2</sub> bond lengths (1.699 Å) in both complexes and with their great stability. In addition, our calculations predict red-shifts of 144 and 134 cm<sup>-1</sup> for the O-H stretching mode of water forming an hydrogen bond with MSA. In the M3 to M5 complexes the the O-H stretching vibration of the water moiety is moderately red-shifted (up to 94 cm<sup>-1</sup>). All the harmonic and anharmonic frequencies are given Tables S4-S6.

**Table S3:** The most relevant anharmonic stretching frequencies (in  $cm^{-1}$ ) and the corresponding intensities (in km mol<sup>-1</sup>) for CH<sub>3</sub>SO<sub>3</sub>H, H<sub>2</sub>O and the CH<sub>3</sub>SO<sub>3</sub>H•H<sub>2</sub>O complexes, computed at B3LYP/aug-cc-pV(T+d)Z level

| Mode   | CH₃SO₃H    | H <sub>2</sub> O | M1         | M2         | M3         | M4         | M5         |
|--------|------------|------------------|------------|------------|------------|------------|------------|
| asym-  |            | 3723(63)         | 3677 (117) | 3681 (110) | 3674(107)  | 3705(108)  | 3694(111)  |
| (H)O-H |            |                  |            |            |            |            |            |
|        |            |                  |            |            |            |            |            |
| sym-   |            | 3634 (5)         | 3490 (176) | 3500(163)  | 3540 (170) | 3564 (166) | 3628 (32)  |
| (H)O-H |            |                  |            |            |            |            |            |
| (S)O-H | 3596(126)  |                  | 2943(1176) | 2961(1190) | 3570 (129) | 3560 (124) | 3567 (138) |
| C-H    | 3020 (0.2) |                  | 3019 (0.5) | 3017 (0.3) | 3027 (0.2) | 3029 (0.2) | 3021 (6)   |
| C-H    | 3012(0.2)  |                  | 3012 (4)   | 3012 (2)   | 3019 (6)   | 3022 (5)   | 3006 (6)   |
| C-H    | 2948 (0.2) |                  | 2947 (0.3) | 2946 (0.5) | 2952(6)    | 2956 (4)   | 2939 (8)   |
| S=O    | 1371(277)  |                  | 1364 (236) | 1358 (268) | 1366 (307) | 1363 (295) | 1364 (265) |
| S=0    | 1177 (201) |                  | 1147 (154) | 1145 (141) | 1166 (213) | 1187 (224) | 1176 (204) |
| S-O(H) | 787 (211)  |                  | 843 (184)  | 842(183)   | 799 (210)  | 821 (209)  | 783 (194)  |

|      |      | M1   | N    | 12   | N    | 13   | N    | 14   | N    | 15   |
|------|------|------|------|------|------|------|------|------|------|------|
| mode | Н    | AH   |
| 1    | 3859 | 3677 | 3865 | 3681 | 3876 | 3674 | 3874 | 3705 | 3880 | 3694 |
| 2    | 3678 | 3491 | 3686 | 3500 | 3766 | 3570 | 3766 | 3560 | 3772 | 3628 |
| 3    | 3179 | 2943 | 3193 | 2961 | 3724 | 3540 | 3723 | 3564 | 3767 | 3567 |
| 4    | 3164 | 3019 | 3164 | 3017 | 3167 | 3027 | 3168 | 3029 | 3161 | 3021 |
| 5    | 3157 | 3012 | 3156 | 3012 | 3155 | 3019 | 3157 | 3022 | 3154 | 3006 |
| 6    | 3064 | 2947 | 3065 | 2946 | 3061 | 2952 | 3063 | 2956 | 3057 | 2939 |
| 7    | 1624 | 1579 | 1624 | 1574 | 1638 | 1587 | 1636 | 1590 | 1629 | 1630 |
| 8    | 1462 | 1415 | 1461 | 1415 | 1461 | 1418 | 1460 | 1409 | 1468 | 1446 |
| 9    | 1459 | 1420 | 1459 | 1421 | 1455 | 1418 | 1455 | 1416 | 1460 | 1418 |
| 10   | 1413 | 1364 | 1406 | 1358 | 1388 | 1366 | 1393 | 1363 | 1407 | 1364 |
| 11   | 1359 | 1328 | 1359 | 1327 | 1366 | 1342 | 1365 | 1342 | 1365 | 1322 |
| 12   | 1325 | 1284 | 1322 | 1275 | 1189 | 1166 | 1187 | 1166 | 1198 | 1176 |
| 13   | 1166 | 1147 | 1166 | 1146 | 1130 | 1086 | 1123 | 1067 | 1130 | 1097 |
| 14   | 994  | 977  | 994  | 973  | 1003 | 981  | 1001 | 971  | 1000 | 976  |
| 15   | 983  | 963  | 982  | 962  | 986  | 966  | 987  | 966  | 992  | 986  |
| 16   | 864  | 843  | 864  | 842  | 819  | 799  | 821  | 791  | 797  | 783  |
| 17   | 805  | 721  | 785  | 658  | 727  | 712  | 727  | 710  | 716  | 701  |
| 18   | 739  | 723  | 740  | 720  | 519  | 511  | 518  | 509  | 516  | 507  |
| 19   | 583  | 494  | 562  | 413  | 499  | 464  | 502  | 461  | 490  | 489  |
| 20   | 522  | 514  | 520  | 511  | 462  | 340  | 461  | 399  | 449  | 435  |
| 21   | 505  | 496  | 502  | 493  | 439  | 434  | 442  | 386  | 391  | 313  |
| 22   | 463  | 448  | 469  | 447  | 335  | 319  | 339  | 299  | 336  | 293  |
| 23   | 350  | 237  | 333  | 294  | 318  | 286  | 311  | 305  | 312  | 301  |
| 24   | 330  | 322  | 324  | 240  | 304  | 294  | 291  | 372  | 250  | 178  |

**Table S4:** Computed Harmonic (H) and anharmonic (AH) frequencies (in  $cm^{-1}$ ) for the CH<sub>3</sub>SO<sub>3</sub>H•H<sub>2</sub>O complexes, obtained at B3LYP/aug-cc-pv(T+d)Z level of theory.

| 25 | 301 | 295.414 | 300 | 292 | 222 | 150 | 231 |    | 218 | 62  |
|----|-----|---------|-----|-----|-----|-----|-----|----|-----|-----|
| 26 | 266 | 235.387 | 246 | 268 | 203 |     | 207 | 89 | 198 | 219 |
| 27 | 224 | 198.479 | 222 | 202 | 137 |     | 139 |    | 137 | 581 |
| 28 | 208 | 183.216 | 203 | 190 | 123 |     | 125 |    | 101 | 176 |
| 29 | 153 | 110.264 | 150 | 101 | 86  | 13  | 79  | 14 | 81  | 88  |
| 30 | 39  | 0.362   | 40  | 8   | 24  | 17  | 21  |    | 17  | 90  |

**Table S5:** Computed Harmonic (H) and anharmonic (AH) frequencies (in  $cm^{-1}$ ) for CH<sub>3</sub>SO<sub>3</sub>H.

| Mode | Н     | A    |
|------|-------|------|
| 1    | 3766  | 3596 |
| 2    | 3166. | 3020 |
| 3    | 3157  | 3012 |
| 4    | 3065  | 2948 |
| 5    | 1461  | 1421 |
| 6    | 1459  | 1418 |
| 7    | 1405  | 1372 |
| 8    | 1358  | 1330 |
| 9    | 1197  | 1177 |
| 10   | 1127  | 1086 |
| 11   | 991   | 973  |
| 12   | 981   | 961  |
| 13   | 812   | 787  |
| 14   | 725   | 708  |
| 15   | 516   | 508  |
| 16   | 490   | 487  |
| 17   | 437   | 368  |
| 18   | 331   | 313  |
| 19   | 310   | 328  |
| 20   | 224   | 201  |
| 21   | 201   | 203  |
|      |       |      |

| Mode | Н    | AH   |
|------|------|------|
| 1    | 1627 | 1575 |
| 2    | 3900 | 3723 |
| 3    | 3797 | 3634 |

Table S6: Computed Harmonic (H) and anharmonic (AH) frequencies (in cm<sup>-1</sup>) for H<sub>2</sub>O