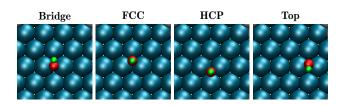
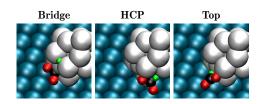

Supporting information for: Density Functional Theory Study on the Adsorption and Decomposition of the Formic Acid Catalyzed by Highly Active Mushroom-like Au@Pd@Pt Tri-Metallic Nanoparticles^{\dagger}

Sai Duan,^{*a,b*} Yong-Fei Ji,^{*b*} Ping-Ping Fang,^{*a*} Yan-Xia Chen,^{*c*} Xin Xu,^{*d*} Yi Luo^{**b,c*} and Zhong-Qun Tian^{**a*}

- 1 Adsorption of O and OH on the top site in the edge area
 - O OH


Fig. S1 Optimized structures for O and OH adsorbed on the top site in the edge area of Au@2 ML Pd@0.5 ML Pt NPs.

4 Adsorption of HCOOH in the edge area


Fig. S4 Optimized structures for HCOOH adsorbed on the edge area with fixed adsorption sites of Au@2 ML Pd@0.5 ML Pt NPs.

2 Adsorption of OH in the center area

Fig. S2 Optimized structures for OH adsorbed on the center area of Au@2 ML Pd@0.5 ML Pt NPs.

3 Adsorption of HCOO in the edge area

Fig. S3 Optimized structures for HCOO adsorbed on the edge area with fixed adsorption sites of Au@2 ML Pd@0.5 ML Pt NPs.

5 Adsorption of $COOH_u$ in the edge area

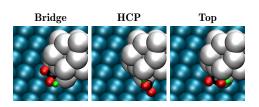


Fig. S5 Optimized structures for $COOH_u$ adsorbed on the edge area with fixed adsorption sites of Au@2 ML Pd@0.5 ML Pt NPs.

6 Adsorption of COOH_d in the edge area

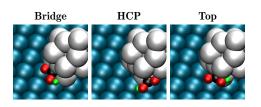


Fig. S6 Optimized structures for $COOH_d$ adsorbed on the edge area with fixed adsorption sites of Au@2 ML Pd@0.5 ML Pt NPs.