ESI materials for

Metal centered oxidation or ligand centered oxidation of metal dithiolene? Spectral, electrochemical and structural studies on a nickel-4-pyridine-1,2-dithiolate system

Xin-Yu Li, Yong-Gang Sun, Peng Huo, Ming-Yan Shao, Shu-Fang Ji, Qin-Yu Zhu* and Jie Dai*

ESI-Fig.1. The optimized minimum energy structures afforded by the calculations of $[Ni(4-pedt)_2]^-$ (top), $[Ni(4-Hpedt)(4-pedt)]^0$ (middle), and $[Ni(4-Hpedt)_2]^+$ (bottom) (Ni, black; N, dark blue; S, yellow; C, gray; H, gray white). Front (left) and side (right) views are presented.

ESI-Fig.2. Changes of the UV-vis-NIR absorption of the oxidized compound 1 in DMF / CH_3CN (4:1 by volume), upon increasing concentration of Na_2SO_3 .

ESI-Fig.3. Changes of the UV-vis-NIR absorption of protonated compound 1 in DMF / CH_3CN (4:1 by volume), upon increasing concentration of Et_3N .

ESI-Fig.4. The mole absorption of compound **1** at various concentrations (from 1.0×10^{-5} to 2.0×10^{-4} mol·L⁻¹).

ESI-Fig.5. Cyclic voltammogram of **1** $(1.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1})$ $(0.1 \text{ mol} \cdot \text{L}^{-1} \text{ Bu}_4 \text{NClO}_4, 100 \text{ mV s}^{-1})$ in the presence of high concentration of HClO₄ in DMF / CH₃CN (4:1 by volume) from 1.2 –1.6 equiv, showing the increased proton reduction process (-0.66 V) under electrocatalysis.

ESI-Table 1. DFT-calculated bond lengths [Å] and angles [°] for $[Ni(4-pedt)_2]^-$, $[Ni(4-pedt)_2]^-$, H^+ , and $[Ni(4-Hpedt)_2]^+$ and experimental data available (in italics) except those of pyridine ring.

ESI-Table 2. The energies of the frontier orbitals of four species: $[Ni(4-pedt)_2]^0$, $[Ni(4-pedt)_2]^-$, $[Ni(4-pedt)_2]^- \cdot H^+$, $[Ni(4-Hpedt)_2]^+$.

ESI-Table 3. Selected Bond Lengths (Å) and Angles (deg) of 1–3a

ESI-Fig.1. The optimized minimum energy structures afforded by the calculations of $[Ni(4-pedt)_2]^-$ (top), $[Ni(4-Hpedt)(4-pedt)]^0$ (middle), and $[Ni(4-Hpedt)_2]^+$ (bottom) (Ni, black; N, dark blue; S, yellow; C, gray; H, gray white). Front (left) and side (right) views are presented.

ESI-Fig.2. Changes of the UV-vis-NIR absorption of the oxidized compound **1** in DMF / CH₃CN (4:1 by volume), upon increasing concentration of Na₂SO₃.

ESI-Fig.3. Changes of the UV-vis-NIR absorption of protonated compound 1 in DMF / CH_3CN (4:1 by volume), upon increasing concentration of Et_3N .

ESI-Fig.4. The mole absorption of compound **1** at various concentrations (from 1.0×10^{-5} to 2.0×10^{-4} mol·L⁻¹).

ESI-Fig.5. Cyclic voltammogram of $\mathbf{1}$ (1.0 × 10⁻³ mol·L⁻¹) (0.1 mol·L⁻¹ Bu₄NClO₄, 100 mV s⁻¹) in the presence of high concentration of HClO₄ in DMF / CH₃CN (4:1 by volume) from 1.2 –1.6 equiv, showing the increased proton reduction process (-0.66 V) under electrocatalysis.

complex	[Ni(4-	$pedt)_2]^-$	$[Ni(4-pedt)_2]^- \cdot H^+$	[Ni(4-]	$Hpedt)_2]^+$
Ni1–S1	2.227	2.146	2.222	2.205	2.134
Ni1–S2	2.233	2.144	2.238	2.235	2.141
Ni1–S3			2.236	2.205	2.142
Ni1–S4			2.235	2.235	2.149
S1–C1	1.756	1.733	1.770	1.758	1.722
S2C2	1.721	1.708	1.689	1.689	1.706
S3–C8			1.731	1.758	1.754
S4–C9			1.703	1.689	1.704
C1–C2	1.368	1.353	1.390	1.387	1.376
C8–C9			1.381	1.387	1.347
S1–Ni1–S2	90.75	91.22	90.91	90.83	91.52
S3-Ni1-S4			90.50	90.83	90.98

ESI-Table 1. DFT-calculated bond lengths [Å] and angles [°] for $[Ni(4-pedt)_2]^-$, $[Ni(4-pedt)_2]^- \cdot H^+$, and $[Ni(4-Hpedt)_2]^+$ and experimental data available (in italics) except those of pyridine ring.

ESI-Table 2. The energies of the frontier orbitals of four species: $[Ni(4-pedt)_2]^0$, $[Ni(4-pedt)_2]^-$,

	$[Ni(4-pedt)_2]^0$	$[Ni(4-pedt)_2]^-$		$[Ni(4-pedt)_2]^- \cdot H^+$		$[Ni(4-Hpedt)_2]^+$	
		α	β	α	β	α	β
LUMO	-4.62	0.52	-0.66	-2.94	-3.46	-5.35	-6.29
SOMO	-6.20	-2.06	-2.40	-4.91	-5.33	-7.66	-7.99
SOMO-1	-7.35	-2.87	-3.30	-5.70	-6.12	-8.42	-8.83
SOMO-2	-7.41	-3.61	-3.66	-6.42	-6.46	-9.21	-9.25

 $[Ni(4-pedt)_2]^- \cdot H^+, [Ni(4-Hpedt)_2]^+.$

ESI-Table 3. Selected Bond Lengths (Å) and Angles (deg) of $1-3^a$

		1	
Ni1–S1	2.1457(14)	Ni1–S2	2.1444(14)
S1C1	1.733(4)	S2-C2	1.708(4)
C1–C2	1.353(6)		
S2-Ni1-S2#1	180.0	S2-Ni1-S1#1	91.22(4)
S2-Ni1-S1#1	88.78(4)	S2-Ni1-S1#1	88.78(4)
S2-Ni1-S1	91.22(4)	S1-Ni1-S1#1	180.0
		2	
Ni1–S1	2.1380(17)	Ni1–S2	2.1480(18)
Ni1–S3	2.1475(17)	Ni1–S4	2.1517(19)
S1C1	1.730(6)	S2-C2	1.687(6)
S3–C8	1.740(6)	S4–C9	1.693(5)
C1–C2	1.369(7)	C8–C9	1.352(7)
S1-Ni1-S3	179.16(8)	S1–Ni1–S4	88.43(6)
S1-Ni1-S2	90.86(6)	S3-Ni1-S4	91.31(6)
S3-Ni1-S2	89.37(6)	S2–Ni1–S4	177.88(7)
		3	
Ni1-S1	2.134(3)	Ni1-S2	2.141(3)
Ni1-S3	2.142(3)	Ni1–S4	2.149(3)
S1C1	1.722(8)	S2-C2	1.706(8)
S3–C8	1.754(8)	S4–C9	1.704(8)
C1–C2	1.376(10)	C8–C9	1.347(10)
S1-Ni1-S2	91.53(10)	S1–Ni1–S4	88.78(10)
S1-Ni1-S3	179.32(13)	S2-Ni1-S4	179.17(13)
S2-Ni1-S3	88.73(10)	S3-Ni1-S4	90.97(10)

a: Symmetry transformation used to generate equivalent atoms: #1: 1 - x, 1 - y, 1 - z.