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1 Histograms

We will consider the following azimuthally symmetric signal function Φ (r) which we found to ap-

proximate the true PT detection volume well
1
. We will use cylindrical coordinates r = (ρ cosφ, ρ sinφ, z).

Φ (z, ρ) = Φ0 exp

�
−
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The amplitude Φ0, which has the units of an inverse length unit, quantifies the rel. PT signal of the

particle. Thus, for small particles it scales with the volume, i.e. Φ0 ∝ R3
. The maximum signal Φmax

is obtained at z+ = [z0 − δpp] /2 while the minimum signal Φmin is obtained at z− = [z0 + δpp] /2
with the positive axial peak-to-peak distance δpp of the detection volume eqn (1) given as δ2pp =

z20 + γ2ω2
ρ. The maximum signal is Φmax = Φ (z+) while the minimum signal is Φmin = Φ (z−).

Equation 1 may be inverted to yield the radius ρ as a function of z for a given signal value Φ:
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In the previous expression, Φ was used to denote a specific signal value, i.e. the equation Φ (z, ρ) = Φ

was solved for ρ. From this equation one may readily show that the following relation holds:

ρ (z,Φ)
dρ (z,Φ)

dΦ
= −

ω2
ρ

4Φ
(3)

Now, z1 and z2 will denote the two roots of the transcendental equation Φ0 [z0 − z] exp
�
−

2z2

ω2
z

�
= Φ,

i.e. the axial coordinate at which the signal value Φ is attained by the function Φ (z, 0). The

occurrence of a certain signal value Φ within an interval IΦ = [Φ,Φ+∆Φ] will be proportional to

the volume V which covers the space in which the signal function Φ (z, ρ) is within this range for

some small but fixed ∆Φ. The following approximation to first order in the small quantity ∆Φ will

be used in the derivation which follows:
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Figure 1: Sketch for the volume integration. ∆Φ > 0.

We obtain for the volume belonging to the signal range [Φ,Φ+∆Φ]:

V[Φ,Φ+∆Φ] = 2π
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where the small cap-volumes V2 have been neglected since they are of order O
�
∆Φ

2
�
as may be

seen from an upper pill-box estimate of the volume V2 (see Fig. 1):
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where ρ2 (Φ, z2) = ρ2 (Φ, z1) = 0 was used in the last step. The smallness of V2 relative to V[Φ,Φ+∆Φ]

as approximated above was also checked numerically. For a wide range of typical parameters and

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013



1 HISTOGRAMS 3

0.001 0.01 0.1 1

10.0

5.0

3.0

15.0

7.0

0.001 0.01 0.1 1
1

5
10

50
100

500
10
0  
x  

Figure 2: (Left) Relative difference in percent between the approximation eqn (5) and the result of a

numerical integration for the exact value of VIΦ normalized to the exact value. (Right) Relative fraction of

the cap-volumes V2 by the total volume VIΦ .

typical number of about 100 logarithmically spaced bins of width [Φi+1 − Φi] /2 one find that the

relative error is less then 15 percent, see Fig. 2. Also, one can see that indeed the fraction of the

volume associated with V2 is small compared to the total volume VIΦ .

This finally gives the expression stated in the main article which is strictly true only for an

infinitesimal bin width dΦ:

p (Φ,Φ0) dΦ ∝
πω2

ρ

2Φ
[z2 (Φ,Φ0)− z1 (Φ,Φ0)] dΦ (7)

1.1 Details on histograms with size dispersion

For the description of the histograms of particles with size dispersion we will assume Φ ∝ R3

which is true for small particles in the Rayleigh regime. Therefore, with the normalization to

the largest particles appearing Φ0 (R) = R3/R3
max (whereby we set the amplitude of the largest

particles signal shape to one, Φ0 (Rmax) = 1), we may rewrite the expression for the mono-disperse

histogram to p (Φ,Φ0)|R = p (Φ/Φ0,Φ0 = 1) /Φ0 with Φ ∈ [Φmin|Φ0=1,Φmax|Φ0=1] via substitution

of variables. Hence, by assuming a size dispersion described by pR (R) = exp(− [R− �R�]
2 /

�
2σ2

R

�
)

and R ∈ [Rmin, Rmax], we get the histogram from the following equation.

p

�
Φ

Φmax (Rmax)
, �R�,σR

�
=

� Rmax

Rmin
p
�
Φ, R3

R3
max

����
R
× pR (R) dR

� Rmax

Rmin
pR (R) dR

=

� Rmax

Rmin
p
�
Φ

R3
max
R3 , 1

�
×

R3
max
R3 × pR (R) dR

� Rmax

Rmin
pR (R) dR

(8)

Note, that there is a critical minimum radius Rc (Φ) of particles contributing to the signal occurrence

of the signal value Φ, i.e. the probability density is zero p
�
Φ×R3

max/R
3, 1

�
= 0 for particles smaller

than R < Rc (Φ). Equivalently, the signal value Φ /∈
�
Φmin|Φ0(R),Φmax|Φ0(R)

�
for R < Rc (see Fig.

3).
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Figure 3: Sketch of the PT signal along the optical axis for three different particle sizes, but the same

heating intensity: only particles of radius R ≥ Rc larger than the critical radius Rc can contribute in the

histogram at a certain PT signal strength Φ. Particles of smaller size can not reach a PT signal strength

Φ within the focal detection volume. Hence, the sharp cutoff in the histograms obtained for mono-disperse

particles at Φmax is blurred in the case of particles with a size dispersion (see also Fig. 5 in the main article).

1.2 Histograms: simple 3D-Gaussian

Now the special case of a 3D-Gaussian detection volume is assumed. This functional form ap-

proximates well the case of a maximal PT signal configuration with an axial laser-offset of about

∆zf ≈ ±zR 1,2
.
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The equation may be inverted to yield the radius ρ as a function of z for a given signal Φ:
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inverting the on-axis signal expression Φ0 exp
�
−2z2/ω2

z

�
= Φ yields the maximum z-values for a

specific signal Φ: z1,2 = ±
�
ln (Φ/Φ0)ω2

z/ (−2)
�1/2

. Also, ρdρ/dΦ = −ω2
ρ/ (4Φ), and thus we obtain:
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Now, using Veff = π3/2γω3
ρas detailed in the supplement of Ref.

1
, one finds the expression stated

in the main article:

p (Φ,Φ0) dΦ ∝
Veff
√
2π

�
ln
�
Φ0
Φ

��1/2

Φ
dΦ (12)
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2 MEM analysis of multimodal Correlation data

Based on a maximum entropy deconvolution of the ACF superposition of individual contributing

species of differing diffusion times τD,i (Ri) one can write the total observable correlation function
3

G (τ)− 1 =
1

�Ntot�

τD,max�

τD,min

ρi (τD,i) gi (τ, τD,i) , (13)

ρi (τD,i) = Φ (Ri)
2 c (τD,i) /

�

i

�
Φ (Ri)

2 n (τD,i)

�
, (14)

where ρi (τD,i) are the weights of each individual correlation function gi (τ, τD,i) belonging to a

species of radius Ri and corresponding diffusion time τD,i which is present in the solution with

concentration n (τD,i). The correct correlation functions gi (τ, τD,i) to be used in PhoCS have been

derived in
1
. However, the diffusion ensembles analyzed in this fashion for FCS data were multi-

modal and separated in their diffusion times by about an order of magnitude. Deconvolution of

the narrow distribution of two particle sizes separated only by a factor of order unity, is however

expected to be less trivial by using this method since the distributions of diffusion times τD ∝ R
will be overlapping and be difficult to tell apart. Further, the weighting depends strongly on the

radius as Φ (R) ∝ R3
in case of PhoCS such that the larger particles can dominate the ACFs more

than in FCS. In FCS, for dye-labeled molecules or structures the signal of the diffusing species

must not necessarily increase with the volume, while dyed polystyrene particles would show the

same behavior. Indeed, the correlation data (see main article) visually appeared to display the

slow component only, and a deconvolution by the MEM method of the two diffusing species was

not possible. The ratio of the diffusion times (τD(20 nm)/τD(30 nm)) is on the order of unity, since

both species are illuminated with the same laser intensity resulting in a higher surface temperature

for the larger particles (∝ R3
) and thus to a speed up of diffusion that compensates the slow down

of the diffusion (∝ 1/R) for constant temperature.

3 Particle size dependent detection volume

Calculations in the generalized Lorentz-Mie framework (GLMT) clearly reveal the shift from a

symmetric configuration for a perfect match of heating and detection laser for small particle radii

(R < 30 nm) to a predominantly single lobed positive configuration for large particle radii (R >
45 nm). The top right graph in figure 4 shows axial scans through the photothermal signal for

varying particle radii compiled into a 2D plot. The single scans are all normalized to the maximum

positive signal (Φmax) for comparison reasons. The top right graph gives lateral scans at the position

of maximum positive signal (z(Φmax)), again normalized to Φmax. By fitting the individual scans

with the formula for the photothermal signal (eqn 1) the detection volume parameters are extracted

as depicted in the bottom graphs of figure 4. As noted for the experimental data the asymmetry

parameter z0 grows with increasing particle radius. Further, the axial and lateral detection volume

dimension (ωz and ωρ) are decrease on the order of 10%.
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Figure 4: (top) Calculated photohtermal signal for varying particle radius in (left) axial and (right) lateral

direction. (middle) line scans through the top graphs for particle radii between 20 and 50 nm in increments

of 5 nm. (bottom) detection volume parameters (left) z0, ωz and (right) ωρ extracted from fitting the top

graph’s data.
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