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1 The iterative Boltzmann Inversion method

Boltzmann Inversion method (BI) is the simplest method one
can use to obtain coarse-grained potentials1. BI is structure-
based and only requires positions of atoms. It is mostly used
for bonded potentials, such as bonds, angles, and torsions. The
idea of BI stems from the fact that in a canonical ensemble
independent degrees of freedom q obey the Boltzmann distri-
bution, i.e.:

P(q) = Z−1e−βU(q) , (1)

where Z =
∫

e−βU(q)dq is the partition function, and β =
1/kBT . Once P(q) is known, one can invert Eq. 1 and obtain
the coarse-grained potential, which, in this case, is a potential
of mean force:

U(q) =−kBT lnP(q) . (2)

Note that the normalization factor Z is not important since it
would only enter the coarse-grained potential U(q) as an irrel-
evant additive constant.

In practice, P(q) is computed from the trajectory of the
reference system, which is sampled either by Monte Carlo,
molecular dynamics, stochastic dynamics, or any other inte-
grator that ensures a canonical distribution of states.

Since the goal of the coarse-grained model is to reproduce
the distribution functions of the reference system as accurately
as possible, one can also iteratively refine the coarse-grained
potentials using some numerical scheme. Hence the iterative
Boltzmann Inversion (IBI)2,3 is a natural extension of the BI
method.

In the IBI method, the coarse-grained potentials are refined
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according to the following scheme:

U (n+1) = U (n)+∆U (n) , (3)

∆U (n) = kBT ln
P(n)

Pre f =U re f
PMF −U (n)

PMF . (4)

One can easily see that convergence is reached as soon as
the distribution function P(n) matches the reference distribu-
tion function Pre f , or, in other words, the potential of mean
force, U (n)

PMF converges to the reference potential of mean
force.

2 The Newton Inversion method

The Newton Inversion method (NI) is another iterative proce-
dure that refines the coarse-grained potentials until the coarse-
grained model reproduces a set of reference distribution func-
tions. It is very similar to IBI method except that the update of
the potential, ∆U , is calculated using rigorous thermodynamic
arguments4,5.

Herein we briefly recapitulate the more compact version for
nonbonded interactions. The primary idea of NI is to express
the potential update ∆U in a thermodynamically consisten-
t way in terms of measurable statistical properties, such as the
radial distribution function g(r). Considering a simple system
of identical particles interacting through a pair potential. The
corresponding interaction Hamiltonian is given as

H = ∑
i, j

U(ri j) , (5)

where U(ri j) is the pair potential. Assuming that all interac-
tions depend only on the relative distance, ri j, between parti-
cles i and j. Assume further that this potential is short-ranged,
i.e., U(ri j) = 0, if ri j ≥ rcut . With given radial distribution
function g(r), one can construct the corresponding interaction
potential U(ri j).

Initially, one can apply a grid approximation to digitalize
the Hamiltonian. By tabulating the potential U(r) on a grid
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of M points with rα = α∆r, where α = 0,1, · · · ,M, and ∆r =
rcut/M is the grid spacing, the Hamiltonian can be rewritten
as

H = ∑
α

Uα Sα , (6)

where Sα is the number of particle pairs with interparticle dis-
tances ri j = rα , which correspond to the tabulated value of the
potential Uα .

On one hand, the average value of Sα serves as an estimator
of the radial distribution function g(r)

⟨Sα⟩=
N(N −1)

2
4πr2

α ∆r
V

g(rα) , (7)

where N is the number of atoms in the system, and V is the
total volume of the system.

On the other hand, ⟨Sα⟩ is a function of the potential Uα ,
and can be expanded in a Taylor series with respect to small
perturbations of Uα , ∆Uα

∆⟨Sα⟩= ∑
γ

∂ ⟨Sα⟩
∂Uγ

∆Uγ +O(∆U2) . (8)

The derivatives ∂ ⟨Sα ⟩
∂Uγ

can be obtained by using the chain
rule

Aαγ =
∂ ⟨Sα⟩
∂Uγ

=
∂

∂Uγ

∫
Sα(q)e−β ∑λ Uλ Sλ (q)dq∫

e−β ∑λ Uλ Sλ (q)dq

= β
(
⟨Sα⟩⟨Sγ⟩−⟨Sα Sγ⟩

)
. (9)

Let U (0)
α be some trial potential such as the corresponding

potential of mean force

U (0)
α =−kBT lng(rα) . (10)

Then using standard Monte Carlo simulations, one can evalu-
ate the averages ⟨Sα⟩ and their deviations from the reference
values S∗α , defined from given g(r)

∆⟨Sα⟩(0) = ⟨Sα⟩(0)−S∗α . (11)

By solving a set of linear Eqs. 8 with the coefficients defined
by Eq. 9, and omitting the terms O(∆U2), we can obtain the
correction to potential ∆U (0)

α , Then the procedure is repeated
with the new potential

U (1)
α =U (0)

α +∆U (0)
α , (12)

until convergence is achieved. The whole procedure is similar
to a solution of a multidimensional non-linear equation using
the Newton–Rhapson method.
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Fig. 1 The evolutions of typical intermolecular RDFs calculated from all-atomistic molecular dynamic simulations at different simulation
periods.
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Fig. 2 The comparison of three sets of intermolecular effective potentials obtained from NI and IBI iteration procedures with different
treatment fashion of electrostatic interactions. The unit of the intermolecular effective potentials is kJ/mol.
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Fig. 3 The comparison of three sets of intramolecular effective potentials obtained from NI and IBI iteration procedures with different
treatment fashion of electrostatic interactions. The unit of the intramolecular effective potentials is kJ/mol.
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Fig. 4 The comparison of intermolecular RDFs and intramolecular distance distributions between CG beads calculated from coarse-grained
simulations to the reference RDFs.
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Fig. 5 Kirkwood-Buff integrals calculated from atomistic simulations and three sets of coarse-grained simulations based on corresponding
effective potentials.
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