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S.I. TAYLOR EXPANSIONS AND APPROXIMATIONS

One of the central ideas in this work is to use Taylor expansions up to a certain order in the size parameter x (which
is proportional to a/λ), to approximate the results of Mie theory. As we demonstrate explicitly here, there are usually
several ways of carrying out these expansions and the resulting approximations may vary dramatically in accuracy.
To clarify this point, we discuss in this supplementary section a few tutorial examples illustrating these concepts, and
summarized in Fig. S1. We consider a function f(x), which will typically represent a physical parameter such as the
extinction coefficient as a function of sphere size. Our goal is to find a simple approximation in the form of a Taylor
expansion around x = 0 (i.e. a Maclaurin series). The crudest approximation would be to include only the lowest
order term in the Taylor expansion, i.e. f(x) ≈ f0(x), where f0(x) = αxn for some integer n. Such an approximation
is only strictly valid in the limit of x→ 0 and will typically correspond in our case to the electrostatics (or quasi-static)
approximation. If for example, f(x) = x2/ ln(1 + x), then f0(x) = x and the approximation is correct (within 5%
relative accuracy) up to x ≈ 0.1. To increase the range of validity of the approximation, one may use a higher order
Taylor expansion, i.e. f(x) ≈ x(1 + x/2), which is then correct (within 5% relative accuracy) up to x ≈ 1.2.

If we then want to approximate a function such as g(x) = ln(1 +x), there are two a priori equally valid approaches:
either we use the Taylor expansion of g(x) as before, or we use the previous approximation of f(x) to compute
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 f ( x ) = x 2 / l n ( 1 + x )
 f 0 ( x ) = x
 f 1 ( x ) = x ( 1 + x / 2 )
 g ( x ) = l n ( 1 + x )
 g 1 ( x ) = x ( 1 - x / 2 )
 g 2 ( x ) = x / ( 1 + x / 2 )

FIG. S1. Illustration of how Taylor expansions can be used to obtain various approximations, with different accuracy, of a
function. Note that the best approximation for g(x) is obtained from g2(x), which correspond to a Taylor expansion of 1/g(x),
rather than from g1(x), which is the standard Taylor expansion of g(x).
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g(x) = x2/f(x). Explicitly, these two approaches give respectively

g(x) ≈ g1(x) = x(1− x/2), (S1)

g(x) ≈ g2(x) =
x

1 + x/2
. (S2)

Note that these two approximations only differ in higher order terms, or explicitly g1(x) = g2(x) +O(x3). But from a
purely practical point of view, g2(x) is much more accurate, being 95%-correct up to x ≈ 1.2 while g1(x) is 95%-correct
only up to x ≈ 0.4. This is also clear in the graph of Fig. S1. As we show in the main text, the same situation
happens when searching for approximations of Mie theory, and for a given order of expansion, several expressions can
be obtained. These expansions are equivalent at some order in x (like g1 and g2) but may be very different in their
accuracy, especially if some terms in the series are resonant.

S.II. FULL EXPRESSION FOR THE ELECTRIC DIPOLAR SUSCEPTIBILITY OF A SPHERE

We here provide for reference the exact expression for the electric dipolar susceptibility of a sphere, ∆1, as obtained
from Mie theory (s and x are defined in Sec. II):

∆1 =
−s( sin(sx)

sx −cos(sx))( cos(x)
x − sin(x)

x2 +sin(x))+( sin(x)
x −cos(x))( cos(sx)

sx − sin(sx)

s2x2 +sin(sx))
s( sin(sx)

sx −cos(sx))( cos(x)
x − sin(x)

x2 +sin(x)+i( sin(x)
x +

cos(x)

x2 −cos(x)))−( sin(x)
x −cos(x)+i(− cos(x)

x −sin(x)))( cos(sx)
sx − sin(sx)

s2x2 +sin(sx))
.

(S3)
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S.III. SUPPLEMENTARY FIGURES FOR GOLD NANOSPHERES AND NANOSHELLS IN WATER
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FIG. S2. Equivalent of Fig. 4 but for gold nanospheres immersed in water. Predicted far-field spectra of the scattering and
absorption coefficients. Exact results (solid lines) are obtained from Mie theory while the approximated results (dashed lines)
are obtained from the expressions obtained in this work. The terms included in the approximation correspond to the electric
dipole ∆1 (Eq. 33; red) and electric quadrupole ∆2 (Eq. 39; blue). The black solid line, shown for comparison, is the converged
Mie solution including contributions from electric and magnetic multipoles of all orders.
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FIG. S3. Equivalent of Fig. 6 but for gold nanoshells (core refractive index 1.5) immersed in water showing the far-field
extinction coefficients with varying filling ratio f = 0.2 to f = 0.9. The black solid line is the fully converged result from Mie
theory, including electric and magnetic multipoles of all orders. For the radii a2 = 30 nm and a2 = 50 nm (first two rows), we
compare the second-order expressions (dashed lines) for δ1 (Eq. 53; red) and δ2 (Eq. 54; blue) to the corresponding term from
Mie theory (solid lines). For the larger particle size a2 = 70 nm, we also compare the second order (Eq. 53) and fourth-order
(Eq. 54) approximations to δ1 (red and green dashed lines, respectively). Note how in all cases the agreement between the
exact and the approximate expressions improves as f increases.
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S.IV. PROCEDURE FOR OBTAINING APPROXIMATE EXPRESSIONS FOR NANOSHELLS

Here we outline the procedure we used to manipulate the Taylor series expansion for δχ1 when seeking approximate
expressions for shells. By analogy, one could use the same procedure to approximate higher order Mie susceptibilities
(i.e. δn and γn with n > 1). We begin by rewriting the exact expression given in equation (43) of the manuscript as:

δχ1 (x, ss, x1, s1) =
A(ss, x) + ∆χ

1 (s1, x1)B(ss, x)

C(ss, x) + ∆χ
1 (s1, x1)D(ss, x)

, (S4)

where A, B, C and D are combinations of the Riccati-Bessel functions, which can be Taylor expanded about x = 0:

A(ss, x) = ψ1(x)ψ′1(ssx)− ssψ1(ssx)ψ′1(x) = x3
[∑M

m=0Am(ss)x
2m +O

(
xN
)]
,

B(ss, x) = ψ1(x)χ′1(ssx)− ssχ1(ssx)ψ′1(x) =
∑M
m=0Bm(ss)x

2m +O
(
xN
)
,

C(ss, x) = ssψ1(ssx)χ1(x)′ − χ1(x)ψ′1(ssx) =
∑M
m=0 Cm(ss)x

2m +O
(
xN
)
,

D(ss, x) = ssχ1(ssx)χ′1(x)− χ1(x)χ′1(ssx) = x−3
[∑M

m=0Dm(ss)x
2m +O

(
xN
)]
,

 (S5)

where N = 2(M + 1). The Taylor coefficients Am(ss), Bm(ss), Cm(ss) and Dm(ss) can be readily written down in
terms of ss if needed. Following the same procedure as in the approximation B for spheres, we first Taylor expand
the inverse of ∆χ

1 (s1, x1) about x1 = 0 and obtain:

∆χ
1 (s1, x1) = x31

[
M∑
m=0

Em(s1)x2m1 +O
(
xN1
)]−1

, (S6)

where the Taylor coefficients Em(s1) can be explicitly written down in terms of s1 = sc/ss. Now, after substituting
x1 = fssx, we can manipulate the series and write δχ1 as

δχ1 = x3 ×

[
M∑
m=0

Amx
2m +O

(
xN
)] [ M∑

m=0

Em{fssx}2m +O
(
xN
)]

+ {fss}3
[
M∑
m=0

Bmx
2m +O

(
xN
)]

[
M∑
m=0

Cmx
2m +O

(
xN
)] [ M∑

m=0

Em{fssx}2m +O
(
xN
)]

+ {fss}3
[
M∑
m=0

Dmx
2m +O

(
xN
)]

= x3 ×

M∑
m=0

{fss}3Bm +
∑
k,l

k+l=m

AkEl{fss}2l

x2m +O
(
xN
)

M∑
m=0

{fss}3Dm +
∑
k,l

k+l=m

CkEl{fss}2l

x2m +O
(
xN
) , (S7)

where the indices k and l are non-negative integers in the range [0,M ].

Isolating the lowest order term, we then have:

δχ1 = x3 ×

[
{fss}3B0 +A0E0

{fss}3D0 + C0E0

]
×


1 +

M∑
m=1

Gmx
2m +O

(
xN
)

1−
M∑
m=1

Fmx
2m +O

(
xN
)

−1

, (S8)
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where we introduced auxiliary coefficients

Fm = −

{fss}3Bm +
∑
k,l

k+l=m

AkEl{fss}2l

{fss}3B0 +A0E0

,

and

Gm = +

{fss}3Dm +
∑
k,l

k+l=m

CkEl{fss}2l

{fss}3D0 + C0E0

.

At this point it is worthwhile to explicitly write the expressions for A0, B0, C0, D0 and E0:

A0(ss) = −2ss(s
2
s − 1)
9 , B0(ss) = +

2s2s + 1
3s2s

,

C0(ss) = +
ss(s

2
s + 2)
3 , D0(ss) = −s

2
s − 1
s2s

,

E0(s1) = −3(s21 + 2)
2(s21 − 1)

,

which can be used to check that the lowest order term is

x3 ×

[
{fss}3B0 +A0E0

{fss}3D0 + C0E0

]
= iδ

(0)
1 , (S9)

where δ
(0)
1 is the lowest-order approximation (i.e. the electrostatic expression) given in equation (44) of the manuscript.

When Taylor expanding susceptibilities of n−th order, i.e. δχn or γχn , one will be able to factor out iδ
(0)
n ∝ x2n+1 or

iγ
(0)
n ∝ x2n+3 and obtain an expression analogous to that in (S8).
The expression in (S8) essentially corresponds to Taylor expansion of the numerator and the denominator each up

to O(xN ). In order to obtain an approximation of type B (cf. equations 27 and 50 in the manuscript), the next step
in the procedure would be to rearrange (S8) so that all terms in the expansion of (δχ1 )−1 are in the numerator. Even
though this can be done for expansions to arbitrary (even) order N , for illustration we first consider the case of M = 2
(N = 6):

(δχ1 )−1 = (iδ
(0)
1 )−1 ×

[
1 +G1x

2 +G2x
4 +O(x6)

1− F1x2 − F2x4 +O(x6)

]
= (iδ

(0)
1 )−1 × [1 +G1x

2 +G2x
4 +O(x6)]× [1 + F1x

2 + (F 2
1 + F2)x4 +O(x6)]

= (iδ
(0)
1 )−1 × [1 + β1x

2 + β2x
4 +O(x6)],

where we used (1− y)−1 = 1 + y + y2 +O(y3), and introduced

β1 = G1 + F1

β2 = G2 + F2 + F1(G1 + F1).

Note that β1 and β2 differ from α1 and α2 in equation (54) of the manuscript only by a multiplicative constant:
β1 = − 3

5α1 and β2 = − 3
350α2. By explicitly writing out the necessary coefficients Fm and Gm in terms of f , ss and

s1 = sc/ss, the expressions for α1 and α2 given in the manuscript can be recovered. In doing so one will find that the
resultant expressions for β1 and β2 are quite cumbersome, but they can be simplified greatly by introducing different
variables such as εa, εb and r defined in equations (45) and (46) of the manuscript.

However, even then, expressions for higher order (N ≥ 8) approximations cease to be simple, though there may
well be a more convenient set of variables that could be used to simplify approximations of arbitrary order in a more
systematic and consistent manner. For completeness, we nevertheless return to the general case of arbitrary order M
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and make use of the infinite geometric series to manipulate (S8):

1

1−
∑M
m=1 Fmx

2m +O (xN )
=

M∑
k=0

(
M∑
m=1

Fmx
2m

)k
+O

(
xN
)

= 1 +

M∑
k=1

(
M∑
m=1

Fmx
2m

)k
+O

(
xN
)

= 1 +

M∑
m=1

Hmx
2m +O

(
xN
)
,

where in the last step the series has been rearranged, and the newly introduced auxiliary coefficients Hm are related

to Fm via the multinomial formula. Now we can write (δχ1 )
−1

up to order N = 2(M + 1) in x:

(δχ1 )
−1

= x−3 ×

[
{fss}3D0 + C0E0

{fss}3B0 +A0E0

]

×

[(
1 +

M∑
m=1

Gmx
2m +O

(
xN
))(

1 +

M∑
m=1

Hmx
2m +O

(
xN
))]

= x−3 ×

[
{fss}3D0 + C0E0

{fss}3B0 +A0E0

]
×

1 +

M∑
m=1

∑
j,k

j+k=m

GjHkx
2m +O

(
x2(M+1)

) ,
which has the same form as equation (50) in the manuscript. Again we stress that, as m increases, the coefficients

βm =
∑
j,k

j+k=m

GjHk (S10)

rapidly become complicated functions of s1, ss and f , yielding relatively simple expressions only for M < 3. Without
being able to express higher order (M ≥ 3) approximations in compact form, the utility in using them is somewhat
questionable.
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