Supporting Information for: "Towards accurate estimates of the spinstate energetics of spin-crossover complexes within density functional theory: a comparative case study of cobalt(II) complexes"

Alfredo Vargas, Itana Krivokapic, Andreas Hauser, Latévi Max Lawson Daku*

Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland

*E-mail: max.lawson@unige.ch

Contents

1	The pseudo-Jahn-Teller stabilization energy of LS [Co(tpy) ₂] ²⁺							
2	2 The tetragonal splitting of the HS state in [Co(tpy) ₂] ²⁺							
3	Opt	imized g	geometries of [Co(tpy) ₂] ²⁺ in the LS and in the HS state	8				
4 Scalar relativistic effects								
	4.1	Influer	ce on the geometries	26				
		4.1.1	LS and HS geometries of $[Co(tpy)_2]^{2+}$	26				
		4.1.2	LS and HS geometries of $[Co(bpy)_3]^{2+}$	27				
		4.1.3	LS and HS geometries of $[Co(NCH)_6]^{2+}$	28				
	4.2	Influer	ce on the energetics	28				

List of Tables

1	Calculated values of the pseudo-Jahn-Teller stabilization energy E_{PJT} (in cm ⁻¹).	6
2	Calculated values of the tetragonal splitting of the HS state, Δ_{HS} , in cm ⁻¹	6
3	Bond lengths (Å) and angles (deg) in the optimized LS ${}^{2}B_{2}$ [Co(tpy) ₂] ²⁺ geometries of D_{2d} symmetry. The	
	reported parameter values are averages over the ADF and G03 calculated structures, with standard deviations	
	given in parentheses. Experimental values are also given for comparison purposes	8
4	Bond lengths (Å) and angles (deg) in the optimized LS ${}^{2}A_{1}$ [Co(tpy) ₂] ²⁺ geometries of $C_{2\nu}$ symmetry, and	
	variations of these structural parameters on going from the LS D_{2d} to the LS C_{2v} geometries. The reported	
	values are averages over the ADF and G03 calculated structures, with standard deviations given in parentheses.	9
5	Bond lengths (Å) and angles (deg) in the optimized HS ${}^{4}A_{2}$ and ${}^{4}E [Co(tpy)_{2}]^{2+}$ geometries of D_{2d} symme-	
	try, and associated HS-LS differences. The reported values are averages over the ADF and G03 calculated	
	structures, with standard deviations given in parentheses. Experimental values are also given	10
6	Bond lengths (Å) and angles (deg) in the optimized HS ${}^{4}A_{2}$ and ${}^{4}B_{1}$ [Co(tpy) ₂] ²⁺ geometries of $C_{2\nu}$ symmetry,	
	and their variations upon the D_{2d} to C_{2v} symmetry lowering in the HS states. The reported values are averages	
	over the ADF calculated structures, with standard deviations given in parentheses	11
7	BLYP/ \mathscr{S}_{fc} -optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states.	12
8	OLYP/ \mathscr{S}_{fc} -optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states.	12
9	OPBE/ \mathscr{G}_{fc} – optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states.	13
10	PBE/ \mathscr{G}_{fc} -optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states.	13
11	RPBE/ \mathscr{S}_{fc} – optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states	14
12	B3LYP*/ \mathscr{G} – optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states.	14

13	B3LYP/ \mathscr{G} -optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states.	15
14	HCTH407/ \mathscr{G} – optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states	15
15	OLYP/ \mathscr{G} -optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states.	16
16	OPBE/ \mathscr{G} -optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the LS \rightarrow HS change of states.	16
17	PBE/ \mathscr{G} – optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles	
	(deg) and their variations upon the LS \rightarrow HS change of states	17
18	BLYP/ \mathscr{G}_{fc} -optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (LS: ² B ₂ \rightarrow ² A ₁ ; HS: ⁴ A ₂ \rightarrow ⁴ A ₂ and	
	${}^{4}E \rightarrow {}^{4}B_{1} \oplus {}^{4}B_{2}). \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	18
19	OLYP/ \mathscr{G}_{fc} -optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (LS: ² B ₂ \rightarrow ² A ₁ ; HS: ⁴ A ₂ \rightarrow ⁴ A ₂ and	
	${}^{4}E \rightarrow {}^{4}B_{1} \oplus {}^{4}B_{2}). \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	19
20	OPBE/ \mathscr{G}_{fc} – optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2v}$ symmetry lowering (LS: ² B ₂ \rightarrow ² A ₁ ; HS: ⁴ A ₂ \rightarrow ⁴ A ₂ and	
	${}^{4}E \rightarrow {}^{4}B_{1} \oplus {}^{4}B_{2}). \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	20
21	PBE/ \mathscr{S}_{fc} -optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (LS: ² B ₂ \rightarrow ² A ₁ ; HS: ⁴ A ₂ \rightarrow ⁴ A ₂ and	
	${}^{4}E \rightarrow {}^{4}B_{1} \oplus {}^{4}B_{2}). \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	21
22	RPBE/ \mathscr{G}_{fc} – optimized LS and HS [Co(tpy) ₂] ²⁺ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and	
	angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (LS: ² B ₂ \rightarrow ² A ₁ ; HS: ⁴ A ₂ \rightarrow ⁴ A ₂ and	
	${}^{4}E \rightarrow {}^{4}B_{1} \oplus {}^{4}B_{2}). \hspace{1cm} \ldots \hspace{1cm} \ldots} \hspace{1cm} \ldots \hspace{1cm} $	22
23	B3LYP*/ \mathscr{G} – optimized LS [Co(tpy) ₂] ²⁺ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg)	
	and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering $(^2B_2 \rightarrow ^2A_1)$.	23

24	B3LYP/ \mathscr{G} -optimized LS [Co(tpy) ₂] ²⁺ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg)	
	and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering $(^2B_2 \rightarrow ^2A_1)$.	23
25	HCTH407/ \mathscr{G} – optimized LS [Co(tpy) ₂] ²⁺ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles	
	(deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering $(^2B_2 \rightarrow ^2A_1)$	24
26	OLYP/ \mathscr{G} -optimized LS $[Co(tpy)_2]^{2+}$ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg)	
	and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering $(^2B_2 \rightarrow ^2A_1)$.	24
27	OPBE/ \mathscr{G} -optimized LS [Co(tpy) ₂] ²⁺ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg)	
	and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering $(^2B_2 \rightarrow ^2A_1)$.	25
28	PBE/ \mathscr{G} -optimized LS [Co(tpy) ₂] ²⁺ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg)	
	and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering $(^2B_2 \rightarrow ^2A_1)$.	25
29	Influence of scalar relativistic effects on the optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry:	
	selected bond lengths (Å) and angles (deg).	26
30	Influence of scalar relativistic effects on the optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of $C_{2\nu}$ symmetry:	
	selected bond lengths (Å) and angles (deg).	26
31	Influence of scalar relativistic effects on the optimized D_3 geometry of $[Co(bpy)_3]^{2+}$ in the HS 4A_2 state:	
	selected bond lengths (Å) and angles (deg); see Fig. 1 for the atom labelling	27
32	Influence of scalar relativistic effects on the optimized C_2 geometry of $[Co(bpy)_3]^{2+}$ in the LS ² A state: selected	
	bond lengths (Å) and angles (deg); see Fig. 1 for the atom labelling. The ligand referred to as L1 is on the C_2	
	axis and the two other ligands designed by L2 are interchanged by the C_2 symmetry operation	27
33	Influence of scalar relativistic effects on the optimized D_{2h} geometries LS and HS geometries of $[Co(NCH)_6]^{2+}$	
	$(nonrelativistic and scalar relativistic (ZORA) OLYP results): bond lengths (\AA) for the pair of equivalent ligands and scalar relativistic (ZORA) OLYP results): bond lengths (\ref{alpha}) for the pair of equivalent ligands and scalar relativistic (ZORA) OLYP results): bond lengths (\ref{alpha}) for the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic (ZORA) of the pair of equivalent ligands and scalar relativistic ($	
	L1 and the two other pairs of equivalents ligands designed by L2 and L3	28
34	Influence of scalar relativistic effects on the energetics of $[Co(tpy)_2]^{2+}$, $[Co(bpy)_3]^{2+}$ and $[Co(NCH)_6]^{2+}$:	
	scalar relativistic shifts to the HS-LS zero-point energy difference ($\Delta E_{\text{HL}}^{\circ}$) and its electronic ($\Delta E_{\text{HL}}^{\text{el}}$) and vibra-	
	tional ($\Delta E_{\text{HL}}^{\text{vib}}$) components. For $[\text{Co}(\text{tpy})_2]^{2+}$, the scalar relativistic shifts to the pseudo-Jahn-Teller stabilization	
	energy in the LS state (E_{PJT}), to the tetragonal splitting of the HS in D_{2d} (Δ_{HS}) and in C_{2v} (Δ'_{HS}) are also given.	28

1 The pseudo-Jahn-Teller stabilization energy of LS $[Co(tpy)_2]^{2+}$

Table 1 gives the calculated values of the PJT stabilization energy E_{PJT} defined as the electronic energy difference: $E_{PJT} = E^{el}({}^{2}B_{2}) - E^{el}({}^{2}A_{1})$. Nearly identical E_{PJT} values are obtained with the \mathscr{I}_{fc} and \mathscr{G} basis sets used in combination with any of the OLYP, OPBE and PBE functionals. The two basis sets are consequently of similar quality and the results obtained with both of them can be compared in a straightforward manner. Proceeding so, the analysis of the results of Table 1 shows that the different XC functionals tend to perform very similarly for the calculation of E_{PJT} . All functionals indeed consistently predict that E_{PJT} is small, with calculated values in the quite narrow $140 \sim 240 \text{ cm}^{-1}$ range. The standard deviation over the calculated E_{PJT} values is $\sigma \approx 35 \text{ cm}^{-1}$. Using an uncertainty of 2σ so as to reflect at best the small though noticeable spread of *ca*. 100 cm^{-1} of the calculated values, a reliable estimate of the PJT stabilization energy is $E_{PJT} = 205(70) \text{ cm}^{-1}$.

	$E_{\rm PJT}$
B3LYP/G	137
B3LYP*/𝒮	174
HCTH407/G	206
OLYP/G	213
OLYP/ \mathcal{S}_{fc}	232
OPBE/S _{fc}	213
OPBE/G	210
$RPBE/S_{fc}$	218
BLYP/ \mathcal{S}_{fc}	234
PBE/G	237
PBE/\mathscr{S}_{fc}	241

Table 1 Calculated values of the pseudo-Jahn-Teller stabilization energy E_{PJT} (in cm⁻¹).

2 The tetragonal splitting of the HS state in $[Co(tpy)_2]^{2+}$

Table 2 gives the calculated values of the tetragonal splitting of the HS state Δ_{HS} defined by the electronic energy difference: $\Delta_{\text{HS}} = E^{\text{el}}(^{4}\text{E}) - E^{\text{el}}(^{4}\text{A}_{2}).$

Table 2 Calculated values of the tetragonal splitting of the HS state, Δ_{HS} , in cm⁻¹.

$OLYP/S_{fc}$	OPBE/ \mathscr{S}_{fc}	$RPBE/S_{fc}$	BLYP/ \mathscr{S}_{fc}	PBE/S _{fc}
+423	+565	+702	+456	+557

These values are all positive, *i.e.*, the ⁴A₂ state is predicted to be the most stable tetragonal component of the HS

state, whatever the XC functional used. Furthermore, these values are quite consistent with one another. The standard deviation over these values of $\approx 110 \text{ cm}^{-1}$ falls within the chemical accuracy of 350 cm⁻¹. This allows us to propose for Δ_{HS} a reliable estimate of $\Delta_{\text{HS}} = +540(110) \text{ cm}^{-1}$.

3 Optimized geometries of $[Co(tpy)_2]^{2+}$ in the LS and in the HS state

Table 3 Bond lengths (Å) and angles (deg) in the optimized LS ${}^{2}B_{2}$ [Co(tpy)₂]²⁺ geometries of D_{2d} symmetry. The reported parameter values are averages over the ADF and G03 calculated structures, with standard deviations given in parentheses. Experimental values are also given for comparison purposes.

	Exp.†	ADF	G03
Co-N, Co-N"	2.083	2.116(8)	2.115(22)
Co-N'	1.912	1.892(8)	1.895(19)
N-C ₂ , N''-C'' ₂	1.354	1.361(6)	1.357(4)
N-C ₆ , N''- $\overline{C_6''}$	1.349	1.344(5)	1.339(4)
$C_2-C_3, C_2''-C_3''$	1.376	1.400(4)	1.396(3)
$C_3-C_4, C_3'-C_4''$	1.378	1.394(4)	1.391(3)
$C_4-C_5, C_4''-C_5''$	1.384	1.395(4)	1.391(3)
$C_5-C_6, C_5''-C_6''$	1.384	1.395(4)	1.391(3)
$C_2 - C'_2, C'_6 - C''_2$	1.480	1.473(5)	1.472(5)
$N'-C_2', N'-C_6'$	1.350	1.363(6)	1.357(6)
$C'_2 - C'_3, C'_5 - C'_6$	1.382	1.399(4)	1.396(3)
$C_{3}^{7}-C_{4}^{7}, C_{4}^{7}-C_{5}^{7}$	1.379	1.394(4)	1.391(3)
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	106.5	107.5(2)	107.5(6)
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	79.4	80.1(1)	80.0(3)
$eta'=igtriangle(\mathrm{N}'' ext{-}\mathrm{Co-N})$ ‡	158.9	160.2(2)	160.0(6)
$= \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	1.2	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.918	0.894(1)	0.896(4)

[†]Data are for the $[Co(tpy)_2]^{2+}$ geometry of approximate D_{2d} symmetry found in the 120 K X-ray structure of LS $[Co(tpy)_2]I_2 \cdot 2H_2O$.[?]

[‡]The D_{2d} symmetry constraint imposes that $\beta' = 2\beta$ and $\gamma = 0$.

γ

	AI	DF	G	03
	L ₁	L ₂	L ₁	L ₂
Values of the selected structural parameter	tries of C_{2v} symm	netry		
Co-N, Co-N"	2.009(11)	2.222(10)	2.012(23)	2.214(22)
Co-N'	1.867(9)	1.961(8)	1.872(19)	1.952(16)
N-C ₂ , N''-C ₂ ''	1.370(6)	1.355(6)	1.365(5)	1.351(4)
N-C ₆ , N''-C ₆ ''	1.348(5)	1.342(5)	1.341(4)	1.337(4)
$C_2-C_3, C_2''-C_3''$	1.398(4)	1.402(4)	1.394(3)	1.399(3)
$C_3-C_4, C_3''-C_4''$	1.394(4)	1.394(5)	1.391(3)	1.391(3)
$C_4-C_5, C_4''-C_5''$	1.395(4)	1.395(4)	1.391(3)	1.391(3)
$C_5-C_6, C_5''-C_6''$	1.394(4)	1.396(4)	1.391(3)	1.392(3)
$C_2-C'_2, C'_6-C''_2$	1.465(5)	1.480(6)	1.466(6)	1.480(4)
$N'-C'_2, N'-C'_6$	1.361(5)	1.363(6)	1.355(6)	1.357(4)
$C'_2-C'_3, C'_5-C'_6$	1.398(4)	1.400(4)	1.395(3)	1.397(3)
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.396(5)	1.392(5)	1.393(3)	1.389(3)
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	103.5(3)	110.9(2)	103.6(6)	110.7(6)
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.3(1)	78.0(1)	81.2(3)	78.3(3)
$eta' = \angle (N''-Co-N)^{\dagger}$	162.5(2)	155.9(2)	162.5(6)	156.5(6)
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0
Structural changes upon the $D_{2d} \rightarrow C_{2v}$ syn	nmetry loweri	ing		
Co-N, Co-N"	-0.107(6)	+0.105(5)	-0.104(3)	+0.098(3)
Co-N'	-0.025(2)	+0.068(3)	-0.024(1)	+0.057(4)
N-C ₂ , N''-C ₂ ''	+0.009(1)	-0.006(1)	+0.008(1)	-0.006(1)
N-C ₆ , N''-C'' ₆	+0.004(1)	-0.002(1)	+0.003(1)	-0.002(1)
$C_2-C_3, C_2''-C_3''$	-0.002(1)	+0.002(1)	-0.002(1)	+0.002(1)
$C_3-C_4, C_3''-C_4''$	-0.001(1)	0.000(1)	0.000(1)	0.000(1)
$C_4-C_5, C_4''-C_5''$	+0.000(1)	-0.001(1)	0.000(1)	0.000(1)
$C_5-C_6, C_5''-C_6''$	-0.001(1)	+0.001(1)	-0.001(1)	+0.000(1)
$C_2-C'_2, C'_6-C''_2$	-0.008(1)	+0.007(1)	-0.006(1)	+0.008(1)
$N'-C'_2, N'-C'_6$	-0.002(1)	-0.001(1)	-0.003(1)	+0.000(1)
$C'_2-C'_3, C'_5-C'_6$	-0.001(1)	+0.001(1)	-0.001(1)	+0.001(1)
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	+0.002(1)	-0.002(1)	+0.002(1)	-0.002(1)
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	-4.0(2)	+3.4(1)	-3.9(1)	+3.2(1)
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	+1.2(1)	-2.1(1)	+1.2(1)	-1.8(1)
$eta' = \angle (N''$ -Co-N) [†]	+2.3(2)	-4.2(2)	+2.5(2)	-3.5(2)
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0

Table 4 Bond lengths (Å) and angles (deg) in the optimized LS ${}^{2}A_{1}$ [Co(tpy)₂]²⁺ geometries of $C_{2\nu}$ symmetry, and variations of these structural parameters on going from the LS D_{2d} to the LS $C_{2\nu}$ geometries. The reported values are averages over the ADF and G03 calculated structures, with standard deviations given in parentheses.

	Exp. [†]	4	A_2	⁴ E
		ADF	G03	ADF
Values of the selected structural parameter	rs			
Co-N, Co-N"	2.137	2.179(11)	2.185(16)	2.182(10)
Co-N'	2.028	2.054(10)	2.053(19)	2.062(9)
N-C ₂ , N''-C'' ₂	1.361	1.361(6)	1.356(4)	1.358(6)
N- C_6 , N''- $C_6^{''}$	1.331	1.355(23)	1.339(4)	1.344(5)
$C_2-C_3, C_2''-C_3''$	1.383	1.401(4)	1.397(3)	1.400(4)
$C_3 - C_4, C_3'' - C_4''$	1.380	1.394(4)	1.391(3)	1.395(4)
$C_4-C_5, C_4''-C_5'''$	1.372	1.395(5)	1.392(3)	1.395(4)
$C_5 - C_6, C_5'' - C_6''$	1.380	1.394(4)	1.390(3)	1.395(4)
$C_2 - C'_2, C'_6 - C''_2$	1.469	1.483(6)	1.483(3)	1.483(6)
$N'-C_{2}, N'-C_{6}$	1.346	1.352(5)	1.347(5)	1.354(6)
$C'_2 - C'_3, C'_5 - C'_6$	1.386	1.401(4)	1.398(3)	1.400(4)
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.372	1.394(5)	1.391(3)	1.394(4)
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.5	107.9(3)	107.9(1)	108.0(1)
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	76.8	76.5(1)	76.6(3)	76.2(1)
$\beta' = \angle (N''-Co-N)^{\ddagger}$	153.6	153.1(2)	153.2(6)	152.4(2)
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	2.7	0.0	0.0	0.0
$\eta = d(\text{Co-N}')/d(\text{Co-N})$	0.949	0.941(2)	0.940(6)	0.945(2)
Variations of the parameters on going from	n the LS D_{2d}	to the HS D_{2d} g	geometries	
Co-N, Co-N"	+0.053	+0.066(4)	+0.066(12)	+0.069(12)
Co-N'	+0.116	+0.161(3)	+0.169(3)	+0.157(3)
N-C ₂ , N''-C'' ₂	+0.007	0.000(1)	-0.002(1)	0.000(1)
N-C ₆ , N''- $C_6^{\bar{\prime}}$	-0.019	+0.001(1)	0.000(1)	+0.001(1)
$C_2-C_3, C_2''-C_3''$	+0.007	0.000(1)	0.000(1)	+0.001(1)
$C_3-C_4, C_3''-C_4''$	+0.002	0.000(1)	0.000(1)	0.000(1)
$C_4-C_5, C_4''-C_5''$	-0.013	0.000(1)	-0.001(1)	0.000(1)
$C_5-C_6, C_5'-C_6''$	-0.004	-0.001(1)	0.000(1)	-0.001(1)
$C_2-C'_2, C'_6-C''_2$	-0.011	+0.010(1)	0.010(1)	+0.011(1)
$N'-C_{2}', N'-C_{6}'$	-0.004	-0.012(1)	-0.010(1)	-0.011(1)
$C'_2 - C'_3, C'_5 - C'_6$	+0.003	+0.002(1)	+0.001(1)	+0.002(1)
$C_{3}^{\tilde{\prime}}-C_{4}^{\tilde{\prime}},C_{4}^{\tilde{\prime}}-C_{5}^{\tilde{\prime}}$	-0.007	+0.001(1)	+0.001(1)	+0.001(1)
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	+1.0	+0.3(1)	+0.5(4)	+0.4(4)
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')^{\ddagger}$	-2.7	-3.5(1)	-3.9(1)	-3.4(1)
$\beta' = \angle (N''-Co-N)^{\ddagger}$	-5.4	-7.0(2)	-7.8(2)	-6.8(2)
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	+1.5	0.0	0.0	0.0

Table 5 Bond lengths (Å) and angles (deg) in the optimized HS ${}^{4}A_{2}$ and ${}^{4}E$ [Co(tpy)₂]²⁺ geometries of D_{2d} symmetry, and associated HS-LS differences. The reported values are averages over the ADF and G03 calculated structures, with standard deviations given in parentheses. Experimental values are also given.

 $\frac{\eta = d(\text{Co-N}')/d(\text{Co-N})}{\eta = d(\text{Co-N}')/d(\text{Co-N})} + 0.031 + 0.047(1) + 0.051(4) + 0.044(4)$ [†]Data are for the geometry of approximate D_{2d} symmetry found in the 295 K X-ray structure of HS [Co(tpy)₂](ClO₄)₂·1.3H₂O.[?]
[‡]The D_{2d} symmetry constraint imposes that $\beta' = 2\beta$ and $\gamma = 0$.

Table 6 Bond lengths (Å) and angles (deg) in the optimized HS ${}^{4}A_{2}$ and ${}^{4}B_{1}$ [Co(tpy)₂]²⁺ geometries of $C_{2\nu}$ symmetry, and their variations upon the D_{2d} to $C_{2\nu}$ symmetry lowering in the HS states. The reported values are averages over the ADF calculated structures, with standard deviations given in parentheses.

	${}^{4}A_{2},$	in C_{2v}	${}^{4}B_{1}, i_{1}$	n C_{2v}
	L_1	L ₁ L ₂		L_2
Values of the selected structural parameters	5			
Co-N, Co-N"	2.174(19)	2.197(20)	2.170(21)	2.198(22)
Co-N'	2.047(17)	2.068(16)	2.098(15)	2.064(13)
N-C ₂ , N''-C ₂ ''	1.361(7)	1.360(6)	1.358(4)	1.359(6)
N-C ₆ , N''-C ₆ ''	1.345(5)	1.344(5)	1.345(3)	1.343(5)
$C_2-C_3, C_2''-C_3''$	1.400(4)	1.401(4)	1.400(4)	1.400(4)
$C_3-C_4, C_3^{\overline{\prime\prime}}-C_4^{\overline{\prime\prime}}$	1.394(4)	1.394(4)	1.394(4)	1.395(4)
$C_4-C_5, C_4''-C_5''$	1.395(4)	1.395(4)	1.395(4)	1.394(4)
$C_5-C_6, C_5''-C_6''$	1.394(4)	1.394(4)	1.394(5)	1.396(4)
$C_2-C'_2, C'_6-C''_2$	1.484(5)	1.484(6)	1.478(5)	1.487(5)
$N'-C_{2}', N'-C_{6}'$	1.351(5)	1.352(5)	1.353(5)	1.353(7)
$C'_2 - C'_3, C'_5 - C'_6$	1.401(4)	1.401(4)	1.401(4)	1.400(4)
$C_{3}^{\tilde{i}}-C_{4}^{\tilde{i}},C_{4}^{\tilde{i}}-C_{5}^{\tilde{i}}$	1.395(4)	1.394(5)	1.394(4)	1.395(4)
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	107.5(5)	108.2(4)	107.6(5)	108.2(6)
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	76.8(3)	76.2(2)	74.9(2)	76.5(3)
$eta'= igtriangle(\mathrm{N}'' ext{-}\mathrm{Co-N})^{\dagger}$	153.6(6)	152.4(4)	149.8(4)	153.0(6)
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0
<i>Variations associated with the</i> $D_{2d} \rightarrow C_{2v}$ <i>s</i>	ymmetry lower	<i>ring:</i> ${}^{4}A_{2} \rightarrow {}^{4}A_{2}$	and ${}^{4}E \rightarrow {}^{4}B_{1} \oplus$	$^{4}B_{2}$
Co-N, Co-N"	-0.008(11)	+0.015(11)	-0.012(12)	+0.016
Co-N'	-0.006(8)	+0.015(6)	+0.037(7)	+0.003
N-C ₂ , N''-C ₂ ''	0.000(2)	-0.001(3)	0.000(1)	0.000(2)
N-C ₆ , N''-C ₆ ''	0.000(1)	0.000(1)	+0.001(1)	-0.001(1)
$C_2-C_3, C_2'-C_3''$	-0.001(1)	0.000(1)	0.000(1)	0.000(1)
$C_3-C_4, C_3^{\tilde{\prime}\prime}-C_4^{\tilde{\prime}\prime}$	0.001(1)	0.000(1)	-0.001(1)	+0.001(1)
$C_4-C_5, C_4''-C_5''$	0.000(1)	0.000(1)	0.000(1)	-0.001(1)
$C_5-C_6, C_5''-C_6''$	0.000(1)	0.000(1)	-0.001(1)	+0.001(1)
$C_2-C'_2, C'_6-C''_2$	+0.001(1)	+0.001(1)	-0.005(1)	+0.004(1)
$N'-C_2', N'-C_6'$	-0.001(1)	0.000(1)	-0.001(2)	-0.001(1)
$C'_2 - C'_3, C'_5 - C'_6$	0.000(1)	0.000(1)	+0.001(1)	0.000(1)
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	0.000(1)	0.000(1)	-0.001(1)	0.000(1)
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	-0.2(4)	+0.4(3)	-0.4(4)	+0.2(5)
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	+0.2(2)	-0.4(2)	-1.3(2)	+0.3(3)
$eta'= eta(\mathrm{N}'' ext{-}\mathrm{Co-N})^{\dagger}$	+0.4(4)	-0.8(4)	-2.6(4)	+0.6(6)
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0

	LS	Н	IS	$LS \rightarrow$	HS
	$^{2}B_{2}$	${}^{4}A_{2}$	⁴ E	$^2B_2 \rightarrow {}^4A_2$	$^{2}B_{2} \rightarrow {}^{4}E$
	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.124	2.189	2.191	0.065	0.067
Co-N'	1.902	2.063	2.071	0.161	0.169
N-C ₂ , N''-C ₂ ''	1.367	1.367	1.364	0.000	-0.003
N-C ₆ , N''-C'' ₆	1.348	1.349	1.348	0.001	0.000
$C_2-C_3, C_2''-C_3''$	1.403	1.403	1.403	0.000	0.000
$C_3-C_4, C_3''-C_4''$	1.398	1.397	1.398	-0.001	0.000
$C_4 - C_5, C_4'' - C_5''$	1.399	1.399	1.398	0.000	-0.001
$C_5 - C_6, C_5'' - C_6''$	1.398	1.397	1.398	-0.001	0.000
$C_2 - C'_2, C'_6 - C''_2$	1.478	1.488	1.488	0.010	0.010
$N'-C'_2, N'-C'_6$	1.369	1.356	1.359	-0.013	-0.010
$C'_{2}-C'_{3}, C'_{5}-C'_{6}$	1.402	1.404	1.403	0.002	0.001
$C_{3}^{\bar{\prime}}-C_{4}^{\bar{\prime}},C_{4}^{\bar{\prime}}-C_{5}^{\bar{\prime}}$	1.397	1.398	1.398	0.001	0.001
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.4	107.6	107.9	0.2	0.5
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.1	76.6	76.2	-3.5	-3.9
$eta' = \angle (N''-Co-N)^{\ddagger}$	160.2	153.3	152.4	-6.9	-7.8
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.895	0.942	0.945	0.047	0.050

Table 7 BLYP/ \mathscr{S}_{fc} -optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

[‡]The D_{2d} symmetry constraint imposes that $\beta' = 2\beta$ and $\gamma = 0$.

Table 8 OLYP/ \mathscr{S}_{fc} -optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

	LS	Н	IS	LS –	HS
	${}^{2}B_{2}$	$^{4}A_{2}$	⁴ E	$^2B_2 \rightarrow {}^4A_2$	$^2B_2 \rightarrow {}^4E$
	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.118	2.188	2.188	0.070	0.070
Co-N'	1.891	2.057	2.060	0.166	0.169
N-C ₂ , N''-C ₂ ''	1.357	1.357	1.356	0.000	-0.001
N-C ₆ , N''-C ₆ ''	1.341	1.341	1.341	0.000	0.000
$C_2-C_3, C_2''-C_3''$	1.399	1.399	1.399	0.000	0.000
$C_3-C_4, C_3''-C_4''$	1.392	1.392	1.392	0.000	0.000
$C_4-C_5, C_4''-C_5''$	1.393	1.393	1.392	0.000	-0.001
$C_5-C_6, C_5''-C_6''$	1.392	1.391	1.392	-0.001	0.000
$C_2-C'_2, C'_6-C''_2$	1.473	1.484	1.484	0.011	0.011
$N'-C_{2}', N'-C_{6}'$	1.361	1.349	1.351	-0.012	-0.010
$C'_2 - C'_3, C'_5 - C'_6$	1.397	1.399	1.399	0.002	0.002
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.391	1.392	1.392	0.001	0.001
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.7	108.0	108.2	0.3	0.5
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.1	76.5	76.3	-3.6	-3.8
$\beta' = \angle (N''-Co-N)^{\ddagger}$	160.2	153.0	152.6	-7.2	-7.6
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})^2$	0.893	0.940	0.941	0.047	0.049

	LS	Н	IS	LS –	HS
	${}^{2}B_{2}$	$^{4}A_{2}$	⁴ E	$^{2}B_{2} \rightarrow ^{4}A_{2}$	$^{2}B_{2} \rightarrow {}^{4}E$
	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.106	2.173	2.170	0.067	0.064
Co-N'	1.881	2.040	2.053	0.159	0.172
N-C ₂ , N''-C'' ₂	1.353	1.352	1.350	-0.001	-0.003
N-C ₆ , N''-C ₆ ''	1.337	1.338	1.337	0.001	0.000
$C_2-C_3, C_2''-C_3''$	1.396	1.396	1.395	0.000	-0.001
$C_3-C_4, C_3^{\overline{\prime\prime}}-C_4^{\overline{\prime\prime}}$	1.389	1.388	1.389	-0.001	0.000
$C_4-C_5, C_4''-C_5''$	1.390	1.389	1.389	-0.001	-0.001
$C_5-C_6, C_5''-C_6''$	1.390	1.389	1.390	-0.001	0.000
$C_2 - C'_2, C'_6 - C''_2$	1.466	1.476	1.476	0.010	0.010
$N'-C_{2}', N'-C_{6}'$	1.356	1.345	1.346	-0.011	-0.010
$C'_2 - C'_3, C'_5 - C'_6$	1.395	1.396	1.395	0.001	0.000
$C_{3}^{\tilde{\prime}}-C_{4}^{\tilde{\prime}},C_{4}^{\tilde{\prime}}-C_{5}^{\tilde{\prime}}$	1.388	1.388	1.388	0.000	0.000
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.7	108.0	108.1	0.3	0.4
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.0	76.5	76.0	-3.5	-4.0
$eta' = \angle (N''-Co-N)^{\ddagger}$	160.0	153.1	152.1	-6.9	-7.9
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.893	0.939	0.946	0.046	0.053

Table 9 OPBE/ \mathscr{S}_{fc} – optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

[‡]The D_{2d} symmetry constraint imposes that $\beta' = 2\beta$ and $\gamma = 0$.

Table 10 PBE/ \mathscr{P}_{fc} -optimized LS and HS [Co(tpy)₂]²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

	LS	Н	[S	$LS \rightarrow$	· HS
	${}^{2}B_{2}$	$^{4}A_{2}$	⁴ E	$^2B_2 \rightarrow {}^4A_2$	$^2B_2 \rightarrow {}^4E$
	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.111	2.170	2.171	0.059	0.059
Co-N'	1.889	2.046	2.054	0.157	0.157
N-C ₂ , N''-C ₂ ''	1.360	1.361	1.358	0.001	0.001
N-C ₆ , N''-C ₆ ''	1.343	1.345	1.344	0.002	0.002
$C_2-C_3, C_2''-C_3''$	1.398	1.399	1.399	0.001	0.001
$C_3-C_4, C_3^{\tilde{\prime}\prime}-C_4^{\tilde{\prime}\prime}$	1.393	1.393	1.394	0.000	0.000
$C_4-C_5, C_4''-C_5''$	1.395	1.395	1.395	0.000	0.000
$C_5-C_6, C_5''-C_6''$	1.394	1.394	1.395	0.000	0.000
$C_2-C'_2, C'_6-C''_2$	1.471	1.479	1.479	0.008	0.008
$N'-C'_2, N'-C'_6$	1.362	1.351	1.353	-0.011	-0.011
$C'_2 - C'_3, C'_5 - C'_6$	1.398	1.400	1.399	0.002	0.002
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.393	1.394	1.394	0.001	0.001
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.4	107.5	107.8	0.1	0.1
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.1	76.7	76.3	-3.4	-3.4
$eta' = \angle (N''\text{-Co-N})^{\ddagger}$	160.2	153.3	152.5	-6.9	-6.9
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.895	0.943	0.946	0.048	0.048

	LS	Н	IS	$LS \rightarrow$	
	${}^{2}B_{2}$	${}^{4}A_{2}$	⁴ E	$^{2}B_{2} \rightarrow ^{4}A_{2}$	$^{2}B_{2} \rightarrow {}^{4}E$
	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.122	2.190	2.189	0.068	0.067
Co-N'	1.899	2.062	2.071	0.163	0.172
N-C ₂ , N''-C'' ₂	1.367	1.367	1.364	0.000	-0.003
N-C ₆ , N''- C_6''	1.349	1.350	1.349	0.001	0.000
$C_2-C_3, C_2''-C_3''$	1.405	1.406	1.405	0.001	0.000
$C_3-C_4, C_3''-C_4''$	1.399	1.399	1.400	0.000	0.001
$C_4 - C_5, C_4'' - C_5''$	1.400	1.400	1.400	0.000	0.000
$C_5 - C_6, C_5'' - C_6''$	1.400	1.398	1.400	-0.002	0.000
$C_2 - C'_2, C'_6 - C''_2$	1.479	1.490	1.489	0.011	0.010
$N'-C'_2, N'-C'_6$	1.369	1.357	1.360	-0.012	-0.009
$C'_2 - C'_3, C'_5 - C'_6$	1.404	1.406	1.405	0.002	0.001
$C_{3}^{\overline{7}}-C_{4}^{\overline{7}},C_{4}^{\overline{7}}-C_{5}^{\overline{7}}$	1.399	1.399	1.399	0.000	0.000
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.4	107.8	107.9	0.4	0.5
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.1	76.6	76.2	-3.5	-3.9
$\beta' = \angle (N''-Co-N)^{\ddagger}$	160.2	153.2	152.3	-7.0	-7.9
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.895	0.942	0.946	0.047	0.051

Table 11 RPBE/ \mathscr{S}_{fc} -optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

[‡]The D_{2d} symmetry constraint imposes that $\beta' = 2\beta$ and $\gamma = 0$.

Table 12 B3LYP*/ \mathscr{G} -optimized LS and HS [Co(tpy)₂]²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

	LS	HS	$\text{LS} \rightarrow \text{HS}$
	${}^{2}B_{2}$	$^{4}A_{2}$	$^2B_2 \rightarrow {}^4A_2$
	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.129	2.187	0.058
Co-N'	1.912	2.068	0.156
N-C ₂ , N''-C ₂ ''	1.355	1.355	0.000
N-C ₆ , N''-C ₆ ''	1.336	1.338	0.002
$C_2-C_3, C_2''-C_3''$	1.394	1.394	0.000
$C_3-C_4, C_3^{''}-C_4^{''}$	1.390	1.390	0.000
$C_4-C_5, C_4''-C_5''$	1.390	1.390	0.000
$C_5 - C_6, C_5'' - C_6''$	1.390	1.389	-0.001
$C_2 - C'_2, C'_6 - C''_2$	1.476	1.486	0.010
$N'-C'_{2}, N'-C'_{6}$	1.353	1.343	-0.010
$C'_2 - C'_3, C'_5 - C'_6$	1.394	1.396	0.002
$C_{3}^{7}-C_{4}^{7}, C_{4}^{7}-C_{5}^{7}$	1.390	1.391	0.001
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.6	107.6	0.00
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	79.8	76.5	-3.30
$\beta' = \angle (N''-Co-N)$ [‡]	159.6	152.9	-6.70
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.898	0.946	0.048

	LS	HS	$\text{LS} \rightarrow \text{HS}$
	${}^{2}B_{2}$	$^{4}A_{2}$	$^{2}B_{2} \rightarrow ^{4}A_{2}$
	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.142	2.195	0.053
Co-N'	1.922	2.078	0.156
N-C ₂ , N''-C'' ₂	1.352	1.353	0.001
N-C ₆ , N''- C_6''	1.334	1.336	0.002
$C_2-C_3, C_2''-C_3''$	1.392	1.393	0.001
$C_3-C_4, C_3''-C_4''$	1.389	1.389	0.000
$C_4-C_5, C_4''-C_5''$	1.388	1.388	0.000
$C_5-C_6, C_5''-C_6''$	1.389	1.388	-0.001
$C_2 - C'_2, C'_6 - C''_2$	1.478	1.487	0.009
$N'-C'_{2}, N'-C'_{6}$	1.350	1.341	-0.009
$C'_{2}-C'_{3}, C'_{5}-C'_{6}$	1.393	1.395	0.002
$C'_{3} - C'_{4}, C'_{4} - C'_{5}$	1.388	1.389	0.001
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	108.0	107.8	-0.2
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	79.6	76.2	-3.4
$\beta' = \angle (N''-Co-N)^{\ddagger}$	159.2	152.5	-6.7
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.897	0.947	0.049

Table 13 B3LYP/ \mathscr{G} -optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

[‡]The D_{2d} symmetry constraint imposes that $\beta' = 2\beta$ and $\gamma = 0$.

Table 14 HCTH407/ \mathscr{G} -optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

	LS	HS	$\text{LS} \rightarrow \text{HS}$
	${}^{2}B_{2}$	$^{4}A_{2}$	$^2B_2 \rightarrow {}^4A_2$
	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.119	2.195	0.076
Co-N'	1.889	2.051	0.162
N-C ₂ , N''-C ₂ ''	1.353	1.352	-0.001
N-C ₆ , N''- $C_6^{''}$	1.335	1.335	0.000
$C_2-C_3, C_2''-C_3''$	1.394	1.396	0.002
$C_3-C_4, C_3^{\prime\prime}-C_4^{\prime\prime}$	1.387	1.387	0.000
$C_4-C_5, C_4''-C_5''$	1.388	1.389	0.001
$C_5-C_6, C_5''-C_6''$	1.388	1.387	-0.001
$C_2 - C'_2, C'_6 - C''_2$	1.467	1.480	0.013
$N'-C'_{2}, N'-C'_{6}$	1.356	1.344	-0.012
$C'_2 - C'_3, C'_5 - C'_6$	1.393	1.395	0.002
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.387	1.388	0.001
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.9	108.4	0.5
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.0	76.5	-3.5
$\beta' = \angle (N''-Co-N)^{\ddagger}$	159.9	153.0	-6.9
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.891	0.934	0.043

	LS	HS	$\text{LS} \rightarrow \text{HS}$
	${}^{2}B_{2}$	$^{4}A_{2}$	$^2B_2 \rightarrow {}^4A_2$
	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.125	2.201	0.076
Co-N'	1.895	2.056	0.161
N-C ₂ , N''-C ₂ ''	1.360	1.360	0.000
N-C ₆ , N''- $\overline{C_6''}$	1.343	1.343	0.000
$C_2-C_3, C_2''-C_3''$	1.400	1.402	0.002
$C_3-C_4, C_3''-C_4''$	1.393	1.393	0.000
$C_4-C_5, C_4''-C_5''$	1.394	1.395	0.001
$C_5-C_6, C_5''-C_6''$	1.394	1.393	-0.001
$C_2 - C'_2, C'_6 - C''_2$	1.473	1.485	0.012
$N'-C_{2}', N'-C_{6}'$	1.363	1.352	-0.011
$C'_{2}-C'_{3}, C'_{5}-C'_{6}$	1.399	1.401	0.002
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.393	1.393	0.000
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.8	108.4	0.6
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.0	76.5	-3.5
$\beta' = \angle (N''-Co-N)^{\ddagger}$	159.9	153.0	-6.9
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.892	0.934	0.042

Table 15 OLYP/ \mathscr{G} – optimized LS and HS [Co(tpy)₂]²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

[‡]The D_{2d} symmetry constraint imposes that $\beta' = 2\beta$ and $\gamma = 0$.

Table 16 OPBE/ \mathscr{G} – optimized LS and HS [Co(tpy)₂]²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

	LS	HS	$\text{LS} \rightarrow \text{HS}$
	${}^{2}B_{2}$	$^{4}A_{2}$	$^2B_2 \rightarrow {}^4A_2$
	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.087	2.170	0.083
Co-N'	1.869	2.024	0.155
$N-C_2, N''-C_2''$	1.356	1.355	-0.001
N-C ₆ , N''-C ₆ ''	1.339	1.339	0.000
$C_2-C_3, C_2''-C_3''$	1.397	1.398	0.001
$C_3-C_4, C_3^{''}-C_4^{''}$	1.390	1.391	0.001
$C_4-C_5, C_4''-C_5''$	1.392	1.392	0.000
$C_5-C_6, C_5''-C_6''$	1.391	1.390	-0.001
$C_2 - C'_2, C'_6 - C''_2$	1.467	1.479	0.012
$N'-C'_{2}, N'-C'_{6}$	1.358	1.348	-0.010
$C'_2 - C'_3, C'_5 - C'_6$	1.396	1.398	0.002
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.390	1.391	0.001
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.0	107.9	0.9
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.4	77.0	-3.4
$\beta' = \angle (N''-Co-N)^{\ddagger}$	160.8	154.0	-6.8
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})^2$	0.896	0.933	0.037

	LS	HS	$\text{LS} \rightarrow \text{HS}$
	${}^{2}B_{2}$	$^{4}A_{2}$	$^2B_2 \rightarrow {}^4A_2$
	L_1, L_2	L_1, L_2	L_1, L_2
Co-N, Co-N"	2.090	2.160	0.070
Co-N'	1.885	2.039	0.154
N-C ₂ , N''-C ₂ ''	1.363	1.362	-0.001
N-C ₆ , N''-C ₆ ''	1.344	1.344	0.000
$C_2-C_3, C_2''-C_3''$	1.399	1.400	0.001
$C_3-C_4, C_3''-C_4''$	1.395	1.395	0.000
$C_4-C_5, C_4''-C_5''$	1.396	1.396	0.000
$C_5-C_6, C_5''-C_6''$	1.395	1.394	-0.001
$C_2 - C'_2, C'_6 - C''_2$	1.470	1.481	0.011
$N'-C_{2}', N'-C_{6}'$	1.364	1.352	-0.012
$C'_2 - C'_3, C'_5 - C'_6$	1.399	1.401	0.002
$C_{3}^{\tilde{i}}-C_{4}^{\tilde{i}},C_{4}^{\tilde{i}}-C_{5}^{\tilde{i}}$	1.395	1.396	0.001
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	106.6	107.1	0.5
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.3	77.0	-3.3
$eta' = \angle (N''-Co-N)^{\ddagger}$	160.7	154.0	-6.7
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\ddagger}$	0.0	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')^2$	0.902	0.944	0.042

Table 17 PBE/ \mathscr{G} –optimized LS and HS [Co(tpy)₂]²⁺ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the LS \rightarrow HS change of states.

	LS $^{2}A_{1}$		HS	HS ⁴ A ₂		HS ${}^{4}B_{1}$	
	L ₁	L ₂	L ₁	L ₂	L_1	L_2	
Parameters values in the C_{2v} geometries							
Co-N, Co-N"	2.017	2.232	2.187	2.210	2.181	2.215	
Co-N'	1.877	1.971	2.064	2.083	2.111	2.074	
N-C ₂ , N''-C ₂ ''	1.376	1.360	1.367	1.366	1.364	1.364	
N-C ₆ , N''-C ₆ ''	1.352	1.346	1.349	1.349	1.349	1.347	
$C_2-C_3, C_2''-C_3''$	1.400	1.405	1.402	1.403	1.403	1.403	
$C_3-C_4, C_3^{\overline{\prime\prime}}-C_4^{\overline{\prime\prime}}$	1.397	1.398	1.398	1.397	1.397	1.398	
$C_4-C_5, C_4^{\prime\prime}-C_5^{\prime\prime}$	1.399	1.398	1.398	1.398	1.398	1.397	
$C_5-C_6, C_5''-C_6''$	1.397	1.398	1.397	1.397	1.397	1.399	
$C_2-C'_2, C'_6-C''_2$	1.470	1.485	1.488	1.489	1.483	1.491	
$N'-C_{2}', N'-C_{6}'$	1.366	1.368	1.355	1.356	1.357	1.358	
$C'_2 - C'_3, C'_5 - C'_6$	1.401	1.403	1.404	1.404	1.404	1.403	
$C_{3}^{7}-C_{4}^{7}, C_{4}^{7}-C_{5}^{7}$	1.400	1.396	1.398	1.398	1.397	1.398	
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	103.4	110.8	107.6	108.2	107.6	108.5	
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.3	78.0	76.6	76.1	74.9	76.4	
$\beta' = \angle (N''-Co-N)^{\dagger}$	162.6	156.0	153.3	152.3	149.8	152.7	
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0	
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.931	0.883	0.944	0.943	0.968	0.936	
Variations associated with the $D_{2d} \rightarrow C_{2v}$ s	symmetry	lowering					
Co-N, Co-N"	-0.107	0.108	-0.002	0.021	-0.010	0.024	
Co-N'	-0.025	0.069	0.001	0.020	0.040	0.003	
N-C ₂ , N''-C ₂ ''	0.009	-0.007	0.000	-0.001	0.000	0.000	
N-C ₆ , N''-C ₆ ''	0.004	-0.002	0.000	0.000	0.001	-0.001	
$C_2-C_3, C_2''-C_3''$	-0.003	0.002	-0.001	0.000	0.000	0.000	
$C_3-C_4, C_3''-C_4''$	-0.001	0.000	0.001	0.000	-0.001	0.000	
$C_4-C_5, C_4''-C_5''$	0.000	-0.001	-0.001	-0.001	0.000	-0.001	
$C_5-C_6, C_5''-C_6''$	-0.001	0.000	0.000	0.000	-0.001	0.001	
$C_2-C'_2, C'_6-C''_2$	-0.008	0.007	0.000	0.001	-0.005	0.003	
$N'-C_{2}', N'-C_{6}'$	-0.003	-0.001	-0.001	0.000	-0.002	-0.001	
$C'_{2}-C'_{3}, C'_{5}-C'_{6}$	-0.001	0.001	0.000	0.000	0.001	0.000	
$C_{3}^{\tilde{7}}-C_{4}^{\tilde{7}},C_{4}^{\tilde{7}}-C_{5}^{\tilde{7}}$	0.003	-0.001	0.000	0.000	-0.001	0.000	
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	-4.0	3.4	0.0	0.6	-0.3	0.6	
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	1.2	-2.1	0.0	-0.5	-1.3	0.2	
$eta' = \angle (N''\text{-Co-N})^{\dagger}$	2.4	-4.2	0.0	-1.0	-2.6	0.3	
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0	
$\eta = d(\text{Co-N'/Co-N''})$	0.035	-0.012	0.001	0.000	0.023	-0.009	

Table 18 BLYP/ \mathscr{P}_{fc} – optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (LS:²B₂ \rightarrow ²A₁; HS: ⁴A₂ \rightarrow ⁴A₂ and ⁴E \rightarrow ⁴B₁ \oplus ⁴B₂).

	LS $^{2}A_{1}$		HS	HS ⁴ A ₂		${}^{4}B_{1}$
	L ₁	L ₂	L ₁	L_2	L_1	L_2
Parameters values in the C_{2v} geometries						
Co-N, Co-N"	2.020	2.221	2.195	2.203	2.186	2.216
Co-N'	1.870	1.956	2.059	2.075	2.093	2.080
N-C ₂ , N''-C ₂ ''	1.366	1.352	1.357	1.357	1.356	1.354
N-C ₆ , N''- $C_6^{\tilde{n}}$	1.345	1.339	1.342	1.342	1.343	1.341
$C_2-C_3, C_2''-C_3''$	1.397	1.401	1.399	1.400	1.399	1.399
$C_3-C_4, C_3''-C_4''$	1.391	1.392	1.392	1.392	1.392	1.393
$C_4-C_5, C_4''-C_5''$	1.393	1.392	1.393	1.393	1.393	1.392
$C_5-C_6, C_5''-C_6''$	1.392	1.394	1.392	1.392	1.392	1.394
C_2 - C'_2 , C'_6 - C''_2	1.465	1.480	1.483	1.484	1.478	1.488
$N'-C_{2}', N'-C_{6}'$	1.359	1.361	1.349	1.349	1.352	1.349
$C'_2 - C'_3, C'_5 - C'_6$	1.397	1.399	1.399	1.400	1.399	1.399
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.392	1.389	1.392	1.391	1.391	1.392
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	104.0	111.0	108.3	108.3	108.3	108.8
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.1	78.0	76.4	76.0	74.9	76.0
$\beta' = \angle (N''-Co-N)^{\dagger}$	162.1	156.1	152.8	152.0	149.8	152.1
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.926	0.881	0.938	0.942	0.957	0.939
Variations associated with the $D_{2d} ightarrow C_{2v}$ s	symmetry	lowering				
Co-N, Co-N"	-0.098	0.103	0.007	0.015	-0.002	0.028
Co-N'	-0.021	0.065	0.002	0.018	0.033	0.020
N-C ₂ , N''-C ₂ ''	0.009	-0.005	0.000	0.000	0.000	-0.002
N-C ₆ , N''-C $_{6}^{\overline{\prime}}$	0.004	-0.002	0.001	0.001	0.002	0.000
$C_2-C_3, C_2''-C_3''$	-0.002	0.002	0.000	0.001	0.000	0.000
$C_3-C_4, C_3''-C_4''$	-0.001	0.000	0.000	0.000	0.000	0.001
$C_4-C_5, C_4''-C_5''$	0.000	-0.001	0.000	0.000	0.001	0.000
$C_5-C_6, C_5''-C_6''$	0.000	0.002	0.001	0.001	0.000	0.002
$C_2-C'_2, C'_6-C''_2$	-0.008	0.007	-0.001	0.000	-0.006	0.004
$N'-C_2', N'-C_6'$	-0.002	0.000	0.000	0.000	0.001	-0.002
$C'_2 - C'_3, C'_5 - C'_6$	0.000	0.002	0.000	0.001	0.000	0.000
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	0.001	-0.002	0.000	-0.001	-0.001	0.000
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2' - \mathbf{C}_2')$	-3.7	3.3	0.3	0.3	0.1	0.6
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	1.0	-2.1	-0.1	-0.5	-1.4	-0.3
$\beta' = \angle (N''-Co-N)^{\dagger}$	1.9	-4.1	-0.2	-1.0	-2.8	-0.5
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0
$\eta = d(Co-N'/Co-N'')$	0.033	-0.012	-0.002	0.002	0.016	-0.003

Table 19 OLYP/ \mathscr{P}_{fc} – optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (LS:²B₂ \rightarrow ²A₁; HS: ⁴A₂ \rightarrow ⁴A₂ and ⁴E \rightarrow ⁴B₁ \oplus ⁴B₂).

	LS	$^{2}A_{1}$	HS	HS ⁴ A ₂		${}^{4}B_{1}$
	L ₁	L ₂	L ₁	L_2	L ₁	L_2
Parameters values in the C_{2v} geometries						
Co-N, Co-N"	1.998	2.216	2.155	2.179	2.148	2.176
Co-N'	1.854	1.953	2.027	2.049	2.083	2.054
N-C ₂ , N''-C ₂ ''	1.361	1.346	1.352	1.352	1.350	1.351
N-C ₆ , N''-C ₆ ''	1.341	1.335	1.338	1.337	1.338	1.336
$C_2-C_3, C_2''-C_3''$	1.394	1.397	1.395	1.396	1.396	1.395
$C_3-C_4, C_3^{\overline{\prime\prime}}-C_4^{\overline{\prime\prime}}$	1.388	1.388	1.389	1.388	1.388	1.390
$C_4-C_5, C_4^{\prime\prime}-C_5^{\prime\prime}$	1.390	1.389	1.390	1.390	1.390	1.388
$C_5-C_6, C_5''-C_6''$	1.389	1.391	1.389	1.389	1.389	1.391
$C_2-C'_2, C'_6-C''_2$	1.459	1.474	1.478	1.477	1.472	1.480
$N'-C'_2, N'-C'_6$	1.354	1.355	1.344	1.345	1.346	1.345
$C'_2-C'_3, C'_5-C'_6$	1.394	1.396	1.396	1.396	1.396	1.396
$C_{3}^{\bar{i}}-C_{4}^{\bar{i}}, C_{4}^{\bar{i}}-C_{5}^{\bar{i}}$	1.389	1.386	1.389	1.388	1.388	1.389
$\alpha = \angle (\mathbf{C}_6' \cdot \mathbf{C}_2'', \mathbf{C}_2 \cdot \mathbf{C}_2')$	103.6	111.2	107.4	108.1	107.4	107.8
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.3	77.8	76.9	76.3	74.9	76.5
$eta'= igtriangle(\mathrm{N}'' ext{-}\mathrm{Co-}\mathrm{N})$ †	162.5	155.7	153.9	152.6	149.9	153.0
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.928	0.881	0.941	0.940	0.970	0.944
Variations associated with the $D_{2d} \rightarrow C_{2v}$ s	ymmetry	lowering				
Co-N, Co-N"	-0.108	0.110	-0.018	0.006	-0.022	0.006
Co-N'	-0.027	0.072	-0.013	0.009	0.030	0.001
N-C ₂ , N''-C ₂ ''	0.008	-0.007	0.000	0.000	0.000	0.001
N-C ₆ , N''-C ₆ ''	0.004	-0.002	0.000	-0.001	0.001	-0.001
$C_2-C_3, C_2''-C_3''$	-0.002	0.001	-0.001	0.000	0.001	0.000
$C_3-C_4, C_3'-C_4''$	-0.001	-0.001	0.001	0.000	-0.001	0.001
$C_4-C_5, C_4''-C_5''$	0.000	-0.001	0.001	0.001	0.001	-0.001
$C_5-C_6, C_5''-C_6''$	-0.001	0.001	0.000	0.000	-0.001	0.001
$C_2-C'_2, C'_6-C''_2$	-0.007	0.008	0.002	0.001	-0.004	0.004
$N'-C_2', N'-C_6'$	-0.002	-0.001	-0.001	0.000	0.000	-0.001
$C'_2 - C'_3, C'_5 - C'_6$	-0.001	0.001	0.000	0.000	0.001	0.001
$C_{3}^{\overline{7}}-C_{4}^{\overline{7}},C_{4}^{\overline{7}}-C_{5}^{\overline{7}}$	0.001	-0.002	0.001	0.000	0.000	0.001
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	-4.1	3.5	-0.6	0.1	-0.7	-0.3
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	1.3	-2.2	0.4	-0.2	-1.1	0.5
$eta' = \angle (N''\text{-Co-N})^{\dagger}$	2.5	-4.3	0.8	-0.5	-2.2	0.9
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.035	-0.012	0.002	0.002	0.024	-0.002

Table 20 OPBE/ \mathscr{P}_{fc} – optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (LS:²B₂ \rightarrow ²A₁; HS: ⁴A₂ \rightarrow ⁴A₂ and ⁴E \rightarrow ⁴B₁ \oplus ⁴B₂).

	LS $^{2}A_{1}$		HS	HS ${}^{4}A_{2}$		${}^{4}B_{1}$
	L ₁	L ₂	L ₁	L_2	L ₁	L_2
Parameters values in the C_{2v} geometries						
Co-N, Co-N"	1.997	2.209	2.152	2.173	2.145	2.172
Co-N'	1.862	1.955	2.032	2.053	2.087	2.050
N-C ₂ , N''-C ₂ ''	1.370	1.355	1.361	1.360	1.358	1.359
N-C ₆ , N''- $C_6^{\bar{n}}$	1.347	1.342	1.345	1.344	1.345	1.342
$C_2-C_3, C_2''-C_3''$	1.396	1.400	1.398	1.399	1.399	1.398
$C_3-C_4, C_3''-C_4''$	1.393	1.393	1.394	1.394	1.393	1.395
$C_4-C_5, C_4''-C_5''$	1.395	1.395	1.395	1.395	1.395	1.394
$C_5-C_6, C_5''-C_6''$	1.394	1.395	1.393	1.394	1.393	1.395
$C_2-C'_2, C'_6-C''_2$	1.462	1.476	1.480	1.480	1.475	1.483
$N'-C_{2}', N'-C_{6}'$	1.360	1.361	1.350	1.351	1.351	1.352
$C'_{2}-C'_{3}, C'_{5}-C'_{6}$	1.397	1.399	1.400	1.400	1.400	1.399
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.396	1.392	1.395	1.395	1.394	1.395
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2' - \mathbf{C}_2')$	103.2	110.6	107.0	107.6	106.9	107.4
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.3	78.0	77.1	76.5	75.1	76.8
$\beta' = \angle (N''-Co-N)^{\dagger}$	162.6	156.0	154.1	153.0	150.3	153.6
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.932	0.885	0.944	0.945	0.973	0.944
Variations associated with the $D_{2d} ightarrow C_{2v}$ s	symmetry	lowering				
Co-N, Co-N"	-0.114	0.098	-0.018	0.003	-0.026	0.001
Co-N'	-0.027	0.066	-0.014	0.007	0.033	-0.004
N-C ₂ , N''-C ₂ ''	0.010	-0.005	0.000	-0.001	0.000	0.001
N-C ₆ , N''-C ₆ ''	0.004	-0.001	0.000	-0.001	0.001	-0.002
$C_2-C_3, C_2''-C_3''$	-0.002	0.002	-0.001	0.000	0.000	-0.001
$C_3-C_4, C_3''-C_4''$	0.000	0.000	0.001	0.001	-0.001	0.001
$C_4-C_5, C_4''-C_5''$	0.000	0.000	0.000	0.000	0.000	-0.001
$C_5-C_6, C_5''-C_6''$	0.000	0.001	-0.001	0.000	-0.002	0.000
$C_2-C'_2, C'_6-C''_2$	-0.009	0.005	0.001	0.001	-0.004	0.004
$N'-C_2', N'-C_6'$	-0.002	-0.001	-0.001	0.000	-0.002	-0.001
$C'_2 - C'_3, C'_5 - C'_6$	-0.001	0.001	0.000	0.000	0.001	0.000
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	0.003	-0.001	0.001	0.001	0.000	0.001
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	-4.2	3.2	-0.5	0.1	-0.9	-0.4
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	1.2	-2.1	0.4	-0.2	-1.2	0.5
$eta' = \angle (N''-Co-N)^{\dagger}$	2.4	-4.2	0.8	-0.3	-2.2	1.1
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0
$\eta = d(Co-N'/Co-N'')$	0.038	-0.010	0.001	0.002	0.027	-0.002

Table 21 PBE/ \mathscr{P}_{fc} – optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (LS:²B₂ \rightarrow ²A₁; HS: ⁴A₂ \rightarrow ⁴A₂ and ⁴E \rightarrow ⁴B₁ \oplus ⁴B₂).

	LS $^{2}A_{1}$		HS	HS ${}^{4}A_{2}$		${}^{4}B_{1}$
	L ₁	L ₂	L ₁	L ₂	L ₁	L_2
Parameters values in the C_{2v} geometries						
Co-N, Co-N"	2.014	2.230	2.179	2.220	2.189	2.212
Co-N'	1.874	1.969	2.054	2.081	2.118	2.064
N-C ₂ , N''-C ₂ ''	1.375	1.360	1.368	1.366	1.362	1.366
N-C ₆ , N''- $C_6^{\tilde{\prime}}$	1.353	1.347	1.350	1.349	1.348	1.347
$C_2-C_3, C_2''-C_3''$	1.403	1.407	1.404	1.406	1.403	1.404
$C_3-C_4, C_3''-C_4''$	1.399	1.399	1.399	1.398	1.399	1.400
$C_4-C_5, C_4''-C_5''$	1.400	1.400	1.400	1.400	1.400	1.397
$C_5-C_6, C_5''-C_6''$	1.399	1.400	1.398	1.398	1.399	1.400
C_2 - C'_2 , C'_6 - C''_2	1.471	1.487	1.491	1.491	1.483	1.493
$N'-C_2', N'-C_6'$	1.367	1.368	1.356	1.358	1.357	1.361
$C'_2 - C'_3, C'_5 - C'_6$	1.403	1.405	1.405	1.405	1.405	1.405
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.401	1.397	1.399	1.399	1.398	1.399
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	103.4	110.9	107.4	108.7	107.9	108.3
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.3	78.0	76.9	76.0	74.6	76.7
$eta' = \angle (N''-Co-N)^{\dagger}$	162.6	155.9	153.7	151.9	149.1	153.4
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.930	0.883	0.943	0.937	0.968	0.933
Variations associated with the $D_{2d} \rightarrow C_{2v}$ s	symmetry	lowering				
Co-N, Co-N"	-0.108	0.108	-0.011	0.030	0.000	0.023
Co-N'	-0.025	0.070	-0.008	0.019	0.047	-0.007
N-C ₂ , N''-C ₂ ''	0.008	-0.007	0.001	-0.001	-0.002	0.002
N-C ₆ , N''-C ₆ ''	0.004	-0.002	0.000	-0.001	-0.001	-0.002
C_2 - C_3 , C_2'' - C_3''	-0.002	0.002	-0.002	0.000	-0.002	-0.001
$C_3-C_4, C_3''-C_4''$	0.000	0.000	0.000	-0.001	-0.001	0.000
$C_4-C_5, C_4''-C_5''$	0.000	0.000	0.000	0.000	0.000	-0.003
$C_5-C_6, C_5''-C_6''$	-0.001	0.000	0.000	0.000	-0.001	0.000
$C_2-C'_2, C'_6-C''_2$	-0.008	0.008	0.001	0.001	-0.006	0.004
$N'-C_{2}', N'-C_{6}'$	-0.002	-0.001	-0.001	0.001	-0.003	0.001
$C'_2 - C'_3, C'_5 - C'_6$	-0.001	0.001	-0.001	-0.001	0.000	0.000
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	0.002	-0.002	0.000	0.000	-0.001	0.000
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	-4.0	3.5	-0.4	0.9	0.0	0.4
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	1.2	-2.1	0.3	-0.6	-1.6	0.5
$eta' = \angle (N''-Co-N)^{\dagger}$	2.4	-4.3	0.5	-1.3	-3.2	1.1
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	0.0	0.0
$\eta = d(Co-N'/Co-N'')$	0.036	-0.012	0.001	-0.004	0.021	-0.013

Table 22 RPBE/ \mathscr{P}_{fc} – optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (LS:²B₂ \rightarrow ²A₁; HS: ⁴A₂ \rightarrow ⁴A₂ and ⁴E \rightarrow ⁴B₁ \oplus ⁴B₂).

	$^{2}A_{1}$		D_{2d}	$\rightarrow C_{2v}$
	L_1	L ₂	L ₁	L_2
Parameters values in the C_{2v} geometries				
Co-N, Co-N"	2.027	2.225	-0.102	0.096
Co-N'	1.889	1.966	-0.023	0.054
N-C ₂ , N''-C'' ₂	1.362	1.349	0.007	-0.006
N-C ₆ , N''-C ₆ ''	1.339	1.335	0.003	-0.001
$C_2-C_3, C_2''-C_3''$	1.391	1.396	-0.003	0.002
$C_3-C_4, C_3^{\overline{\prime\prime}}-C_4^{\overline{\prime\prime}}$	1.390	1.390	0.000	0.000
$C_4-C_5, C_4''-C_5''$	1.389	1.390	-0.001	0.000
$C_5 - C_6, C_5'' - C_6''$	1.390	1.391	0.000	0.001
$C_2 - C'_2, C'_6 - C''_2$	1.471	1.483	-0.005	0.007
$N'-C'_2, N'-C'_6$	1.350	1.354	-0.003	0.001
$C'_2 - C'_3, C'_5 - C'_6$	1.393	1.395	-0.001	0.001
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.392	1.388	0.002	-0.002
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	103.7	110.8	-3.9	3.2
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.0	78.1	1.2	-1.7
$eta'= igtriangle(\mathrm{N}'' ext{-}\mathrm{Co-N})^{\dagger}$	162.1	156.1	2.5	-3.5
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.932	0.884	0.034	-0.014

Table 23 B3LYP*/ \mathscr{G} -optimized LS [Co(tpy)₂]²⁺ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (${}^{2}B_{2} \rightarrow {}^{2}A_{1}$).

Table 24 B3LYP/ \mathscr{G} -optimized LS $[Co(tpy)_2]^{2+}$ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering $(^2B_2 \rightarrow ^2A_1)$.

	${}^{2}A_{1}$		D_{2d}	$\rightarrow C_{2v}$
	L_1	L_2	L_1	L_2
Parameters values in the C_{2v} geometries				
Co-N, Co-N"	2.042	2.236	-0.100	0.094
Co-N'	1.899	1.973	-0.023	0.051
$N-C_2, N''-C_2''$	1.359	1.347	0.007	-0.005
$N-C_6, N''-C_6''$	1.336	1.334	0.002	0.000
$C_2-C_3, C_2''-C_3''$	1.390	1.395	-0.002	0.003
$C_3-C_4, C_3^{\overline{\prime\prime}}-C_4^{\overline{\prime\prime}}$	1.389	1.389	0.000	0.000
$C_4-C_5, C_4''-C_5''$	1.388	1.388	0.000	0.000
$C_5-C_6, C_5''-C_6''$	1.389	1.389	0.000	0.000
$C_2 - C'_2, C'_6 - C''_2$	1.474	1.484	-0.004	0.006
$N'-C_2', N'-C_6'$	1.347	1.351	-0.003	0.001
$C'_2 - C'_3, C'_5 - C'_6$	1.392	1.394	-0.001	0.001
$C_{3}^{\tilde{i}}-C_{4}^{\check{i}},C_{4}^{\check{i}}-C_{5}^{\check{i}}$	1.390	1.387	0.002	-0.001
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	104.2	111.1	-3.8	3.1
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	80.8	77.9	1.2	-1.7
$eta'= igtriangle (\mathrm{N}'' ext{-}\mathrm{Co-}\mathrm{N})^{\dagger}$	161.6	155.8	2.4	-3.4
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.930	0.882	0.033	-0.015

	² /	$^{2}A_{1}$		$_d \rightarrow C_{2v}$	
	L_1	L ₂	L ₁	L_2	
Parameters values in the C_{2v} geometries					
Co-N, Co-N"	2.013	2.220	-0.106	0.101	
Co-N'	1.864	1.948	-0.025	0.059	
N-C ₂ , N''-C ₂ ''	1.361	1.347	0.008	-0.006	
N-C ₆ , N''- $\overline{C_6''}$	1.338	1.333	0.003	-0.002	
$C_2-C_3, C_2''-C_3''$	1.392	1.397	-0.002	0.003	
$C_3-C_4, C_3^{\overline{\prime\prime}}-C_4^{\overline{\prime\prime}}$	1.387	1.388	0.000	0.001	
$C_4 - C_5, C_4'' - C_5''$	1.388	1.388	0.000	0.000	
$C_5 - C_6, C_5'' - C_6''$	1.387	1.389	-0.001	0.001	
$C_2 - C'_2, C'_6 - C''_2$	1.460	1.476	-0.007	0.009	
$N'-C'_2, N'-C'_6$	1.353	1.355	-0.003	-0.001	
$C'_2 - C'_3, C'_5 - C'_6$	1.392	1.395	-0.001	0.002	
$C'_{3}-C'_{4}, C'_{4}-C'_{5}$	1.389	1.385	0.002	-0.002	
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	103.9	111.1	-4.0	3.2	
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.2	78.2	1.2	-1.8	
$eta'= igtriangle(\mathrm{N}'' ext{-}\mathrm{Co-N})^{\dagger}$	162.5	156.4	2.6	-3.5	
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0	
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.926	0.877	0.035	-0.014	

Table 25 HCTH407/ \mathscr{G} -optimized LS [Co(tpy)₂]²⁺ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (²B₂ \rightarrow ²A₁).

Table 26 OLYP/ \mathscr{G} – optimized LS $[Co(tpy)_2]^{2+}$ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering $(^2B_2 \rightarrow ^2A_1)$.

	${}^{2}A_{1}$		D_{2d}	$\rightarrow C_{2\nu}$
	L_1	L_2	L_1	L_2
Parameters values in the C_{2v} geometries				
Co-N, Co-N"	2.017	2.228	-0.108	0.103
Co-N'	1.869	1.956	-0.026	0.061
N-C ₂ , N''-C ₂ ''	1.369	1.354	0.009	-0.006
N-C ₆ , N''-C ₆ ''	1.346	1.340	0.003	-0.003
$C_2-C_3, C_2''-C_3''$	1.398	1.403	-0.002	0.003
$C_3-C_4, C_3^{\overline{\prime\prime}}-C_4^{\overline{\prime\prime}}$	1.393	1.394	0.000	0.001
$C_4-C_5, C_4''-C_5''$	1.394	1.394	0.000	0.000
$C_5-C_6, C_5''-C_6''$	1.393	1.394	-0.001	0.000
$C_2-C'_2, C'_6-C''_2$	1.466	1.482	-0.007	0.009
$N'-C_2', N'-C_6'$	1.360	1.362	-0.003	-0.001
$C'_2 - C'_3, C'_5 - C'_6$	1.398	1.400	-0.001	0.001
$C_{3}^{\tilde{i}}-C_{4}^{\tilde{i}},C_{4}^{\tilde{i}}-C_{5}^{\tilde{i}}$	1.395	1.391	0.002	-0.002
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	103.8	111.1	-4.0	3.3
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.2	78.1	1.2	-1.9
$eta'= igtriangle(\mathrm{N}'' ext{-}\mathrm{Co-N})^{\dagger}$	162.5	156.3	2.6	-3.6
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.927	0.878	0.035	-0.014

	2	$^{2}A_{1}$		$\rightarrow C_{2v}$
	L ₁	L ₂	L ₁	L_2
Parameters values in the C_{2v} geometries				
Co-N, Co-N"	1.982	2.186	-0.105	0.099
Co-N'	1.845	1.927	-0.024	0.058
N-C ₂ , N''-C ₂ ''	1.364	1.350	0.008	-0.006
N-C ₆ , N''-C ₆ ''	1.342	1.337	0.003	-0.002
$C_2-C_3, C_2'-C_3''$	1.395	1.399	-0.002	0.002
$C_3-C_4, C_3^{\tilde{\prime}\prime}-C_4^{\tilde{\prime}\prime}$	1.390	1.391	0.000	0.001
$C_4 - C_5, C_4'' - C_5''$	1.392	1.392	0.000	0.000
$C_5-C_6, C_5''-C_6''$	1.390	1.392	-0.001	0.001
$C_2 - C'_2, C'_6 - C''_2$	1.460	1.475	-0.007	0.008
$N'-C'_{2}, N'-C'_{6}$	1.356	1.357	-0.002	-0.001
$C'_2 - C'_3, C'_5 - C'_6$	1.395	1.397	-0.001	0.001
$C_{3}^{\overline{7}}-C_{4}^{\overline{7}}, C_{4}^{\overline{7}}-C_{5}^{\overline{7}}$	1.392	1.389	0.002	-0.001
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	103.0	110.2	-4.0	3.2
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.6	78.7	1.2	-1.7
$eta'=igtriangle(\mathrm{N}'' ext{-}\mathrm{Co-N})^{\dagger}$	163.3	157.3	2.5	-3.5
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N}'/\text{Co-N}'')$	0.931	0.882	0.035	-0.014

Table 27 OPBE/ \mathscr{G} – optimized LS [Co(tpy)₂]²⁺ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (${}^{2}B_{2} \rightarrow {}^{2}A_{1}$).

Table 28 PBE/ \mathscr{G} – optimized LS [Co(tpy)₂]²⁺ geometry of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg) and their variations upon the $D_{2d} \rightarrow C_{2\nu}$ symmetry lowering (${}^{2}B_{2} \rightarrow {}^{2}A_{1}$).

	${}^{2}A_{1}$		D_{2d} -	$\rightarrow C_{2\nu}$
	L_1	L_2	L_1	L_2
Parameters values in the C_{2v} geometries				
Co-N, Co-N"	1.988	2.186	-0.102	0.096
Co-N'	1.863	1.944	-0.022	0.059
N-C ₂ , N''-C ₂ ''	1.372	1.357	0.009	-0.006
N-C ₆ , N''-C ₆ ''	1.347	1.342	0.003	-0.002
$C_2-C_3, C_2''-C_3''$	1.397	1.401	-0.002	0.002
$C_3-C_4, C_3^{\tilde{\prime}\prime}-C_4^{\tilde{\prime}\prime}$	1.394	1.395	-0.001	0.000
$C_4-C_5, C_4''-C_5''$	1.396	1.396	0.000	0.000
$C_5-C_6, C_5''-C_6''$	1.394	1.395	-0.001	0.000
$C_2-C'_2, C'_6-C''_2$	1.464	1.478	-0.006	0.008
$N'-C_2', N'-C_6'$	1.362	1.362	-0.002	-0.002
$C'_2 - C'_3, C'_5 - C'_6$	1.398	1.400	-0.001	0.001
$C_{3}^{\tilde{i}}-C_{4}^{\tilde{i}},C_{4}^{\tilde{i}}-C_{5}^{\tilde{i}}$	1.397	1.394	0.002	-0.001
$\alpha = \angle (C'_6 - C''_2, C_2 - C'_2)$	102.7	109.7	-3.9	3.1
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.6	78.6	1.3	-1.7
$eta' = \angle (\mathrm{N''} ext{-}\mathrm{Co-}\mathrm{N})^{\dagger}$	163.1	157.1	2.4	-3.6
$\gamma = \angle (N' - C'_2 - C_2 - N) = \angle (N'' - C''_2 - C'_6 - N')^{\dagger}$	0.0	0.0	0.0	0.0
$\eta = d(\text{Co-N'/Co-N''})$	0.937	0.889	0.035	-0.013

4 Scalar relativistic effects

The relativistic calculations were run with the OLYP functional within the zero-order regular approximation (ZORA) for relativistic effects, using the ADF program package and the OLYP functional combined with the all-electron ZORA TZP STO basis set from the ADF basis set database. The nonrelativistic OLYP results reported below were obtained with the nonrelativistic all-electron TZP STO basis set.

4.1 Influence on the geometries

4.1.1 LS and HS geometries of [Co(tpy)₂]²⁺

Table 29 Influence of scalar relativistic effects on the optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of D_{2d} symmetry: selected bond lengths (Å) and angles (deg).

	Nonrelativistic results			Scalar n	elativistic	results		
	LS	Н	HS		HS		Н	[S
	${}^{2}B_{2}$	$^{4}A_{2}$	⁴ E	$^{2}B_{2}$	${}^{4}A_{2}$	⁴ E		
	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2	L_1, L_2		
Co-N, Co-N"	2.118	2.188	2.188	2.111	2.180	2.180		
Co-N'	1.891	2.057	2.060	1.881	2.042	2.072		
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	107.7	108.0	108.2	107.6	108.0	108.0		
$\beta = \angle (N' - Co - N) = \angle (N'' - Co - N')$	80.1	76.5	76.3	80.2	76.7	75.8		

Table 30 Influence of scalar relativistic effects on the optimized LS and HS $[Co(tpy)_2]^{2+}$ geometries of $C_{2\nu}$ symmetry: selected bond lengths (Å) and angles (deg).

	LS	$^{2}A_{1}$	HS	$^{4}A_{2}$	HS	${}^{4}B_{1}$
	L ₁	L ₂	L ₁	L ₂	L ₁	L ₂
Nonrelativistic results						
Co-N, Co-N"	2.020	2.221	2.195	2.203	2.186	2.216
Co-N'	1.870	1.956	2.059	2.075	2.093	2.080
$\alpha = \angle (\mathbf{C}_6' - \mathbf{C}_2'', \mathbf{C}_2 - \mathbf{C}_2')$	104.0	111.0	108.3	108.3	108.3	108.8
$\beta = \angle (N' - Co - N) = \angle (N'' - Co - N')$	81.1	78.0	76.4	76.0	74.9	76.0
Scalar relativistic results						
Co-N, Co-N"	1.992	2.219	2.179	2.179	2.166	2.196
Co-N'	1.855	1.949	2.041	2.040	2.090	2.065
$\alpha = \angle (C_6' - C_2'', C_2 - C_2')$	103.1	111.1	108.0	108.0	107.7	108.3
$\beta = \angle (N'-Co-N) = \angle (N''-Co-N')$	81.5	78.1	76.7	76.8	75.0	76.3

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

4.1.2 LS and HS geometries of [Co(bpy)₃]²⁺

Figure 1 Atom labelling used for $[Co(bpy)_3]^{2+}$.

Table 31 Influence of scalar relativistic effects on the optimized D_3 geometry of $[Co(bpy)_3]^{2+}$ in the HS 4A_2 state: selected bond lengths (Å) and angles (deg); see Fig. 1 for the atom labelling.

	Nonrelativistic	Scalar relativistic
Co-N = Co-N'	2.179	2.169
$\beta = \angle (N'-Co-N)$	75.6	75.8
$\gamma = \angle (N' - C'_2 - C_2 - N)$	6.1	6.8

Table 32 Influence of scalar relativistic effects on the optimized C_2 geometry of $[Co(bpy)_3]^{2+}$ in the LS ²A state: selected bond lengths (Å) and angles (deg); see Fig. 1 for the atom labelling. The ligand referred to as L1 is on the C_2 axis and the two other ligands designed by L2 are interchanged by the C_2 symmetry operation.

	Nonrelativistic	Scalar relativistic
Ligand L1		
Co-N = Co-N'	1.973	1.962
$\beta = \angle (N'-Co-N)$	81.6	81.9
$\gamma = \angle (N' - C'_2 - C_2 - N)$	0.2	0.4
Ligands L2		
Co-N	2.002	1.991
Co-N'	2.250	2.244
$\beta = \angle (N'-Co-N)$	77.6	77.8
$\gamma = \angle (N' - C'_2 - C_2 - N)$	13.3	13.6

4.1.3 LS and HS geometries of [Co(NCH)₆]²⁺

Table 33 Influence of scalar relativistic effects on the optimized D_{2h} geometries LS and HS geometries of $[Co(NCH)_6]^{2+}$ (non-relativistic and scalar relativistic (ZORA) OLYP results): bond lengths (Å) for the pair of equivalent ligands L1 and the two other pairs of equivalents ligands designed by L2 and L3.

	IS		HS				
	LS			115			
	L1	L2, L3		L1	L2, L3		
Non relativistic results							
	L1	L2, L3		L1	L2, L3		
Co-N	2.303	1.908		2.151	2.148		
N-C	1.154	1.151		1.153	1.153		
C-H	1.077	1.077		1.077	1.078		
Scalar relativistic results							
Co-N	2.299	1.896		2.138	2.138		
N-C	1.154	1.151		1.153	1.152		
C-H	1.077	1.077		1.077	1.078		
						•	

4.2 Influence on the energetics

Table 34 Influence of scalar relativistic effects on the energetics of $[Co(tpy)_2]^{2+}$, $[Co(bpy)_3]^{2+}$ and $[Co(NCH)_6]^{2+}$: scalar relativistic shifts to the HS-LS zero-point energy difference (ΔE_{HL}°) and its electronic (ΔE_{HL}^{el}) and vibrational (ΔE_{HL}^{vib}) components. For $[Co(tpy)_2]^{2+}$, the scalar relativistic shifts to the pseudo-Jahn-Teller stabilization energy in the LS state (E_{PJT}), to the tetragonal splitting of the HS in D_{2d} (Δ_{HS}) and in C_{2v} (Δ'_{HS}) are also given.

	Nonrelativistic	Scalar relativistic	Scalar relativistic shift			
The [C	$o(tpy)_2]^{2+}$ complex					
$\Delta E_{\rm HL}^{\rm el}$	3160	3546	+386			
$\Delta E_{\rm HL}^{\rm vib}$	-180	-219	-39			
$\Delta E_{\rm HL}^{\circ}$	2980	3326	+347			
$E_{\rm PJT}$	204	221	+17			
$\Delta_{\rm HS}$	423	474	+51			
$\Delta'_{\rm HS}$	-288	-216	+72			
<i>The</i> $[Co(bpy)_3]^{2+}$ <i>complex</i>						
$\Delta E_{\rm HL}^{\rm el}$	394	668	+274			
$\Delta E_{\rm HL}^{\rm vib}$	-309	-330	-21			
$\Delta E_{ m HL}^{\circ}$	85	338	253			
<i>The</i> $[Co(NCH)_6]^{2+}$ <i>complex</i>						
$\Delta E_{\rm HL}^{\rm el}$	-809	-192	+617			
$\Delta E_{\rm HL}^{\rm vib}$	-484	-504	-20			
$\Delta E_{\rm HL}^{\circ}$	-1293	-696	+597			