Electronic supporting information for:

A kinetic and mechanistic study into the formation of the Cu-Cr layered double hydroxide

Gareth R. Williams,^{1,2}* Alexander Clout,² and Jonathan C. Burley³

¹ UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX.

² School of Human Sciences, Faculty of Life Sciences and Computing, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB.

³ Laboratory of Biophysics and Surface Analysis, Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD

* Author for correspondence. Tel: 0207 763 5868; Fax: 0207 753 5942; email: g.williams@ucl.ac.uk.

Figure S1: UV-visible spectroscopy data illustrating the change in metal concentrations in solution during the synthesis of Cu₂Cr-Cl. Changes in intensity of the Cr^{3+ 4}A_{2g} \rightarrow ⁴T_{1g} (415 nm; \blacksquare) and ⁴A_{2g} \rightarrow ⁴T_{2g} transitions (580 nm; \blacktriangle) are shown, as is the Cu^{2+ 2}E_g \rightarrow ²T_{2g} transition at 810 nm (\bigcirc). Data are shown as normalised intensity.