## In situ X-ray pair distribution function analysis of geopolymer gel

## nanostructure formation kinetics

Claire E. White, John L. Provis, Breaunnah Bloomer, Neil J. Henson and Katharine Page

## **Electronic Supplementary Information**

Given below are supporting Figures including an example of the total scattering patterns acquired on beamline 11-ID-B at the Advanced Photon Source (Figure S.1.) and the atomic pair distribution functions of high alkali hydroxide-activated metakaolin (Figure S.2.), high alkali hydroxide-activated slag (Figure S.3.), low alkali hydroxide-activated metakaolin (Figure S.4.), low alkali silicate-activated metakaolin (Figure S.5.) and low alkali silicate-activated slag (Figure S.6.). Also included is an example of the quality of fit obtained using the extent of reaction quantification method (Figure S.7.).



**Figure S.1.** In-situ X-ray total scattering functions of the geopolymerisation reaction for high alkali hydroxide-activated metakaolin, obtained at times as marked.



**Figure S.2.** In-situ X-ray pair distribution functions of high alkali hydroxide-activated metakaolin, obtained at times as marked.



**Figure S.3.** In-situ X-ray pair distribution functions of high alkali hydroxide-activated slag, obtained at times as marked.



**Figure S.4.** In-situ X-ray pair distribution functions of low alkali hydroxide-activated metakaolin, obtained at times as marked.



**Figure S.5.** In-situ X-ray pair distribution functions of low alkali silicate-activated metakaolin, obtained at times as marked.



**Figure S.6.** In-situ X-ray pair distribution functions of low alkali silicate-activated slag, obtained at times as marked.



**Figure S.7.** In-situ X-ray pair distribution functions (PDFs) of high alkali hydroxide-activated slag: (a) First and final PDFs, obtained at times as marked. (b) PDF obtained at 8.3 hrs, with the fit to data obtained by a linear combination of the PDFs in (a) with  $\alpha = 0.405$ .