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1. Tight-binding model for graphdiyne under biaxial strain and no strain

For convenience of characterizing the hopping matrix, we label each carbon atom by a number as in Fig. S1.

Fig. S1. Schematic structure of graphdiyne, and the label of carbon atoms in a unit cell (the parallelogram)

for the hopping matrix of Hamiltonian. t . is defined as the hopping amplitude between site i and site j

i

labeled by numbers (from 1 to 18).

The Hamiltonian can be written as in Wannier representation
=20, (1)
where v =(6,,,6 ,.6,5.6,--C 1.6 1), aNd 5={¢,,€ ,-€,,—€,,0}. After making Fourier transform, we have
H =y {H., (2)

with
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where k,and k, arethe x and ycomponents of momentum of 7 electrons, and the lattice spacing a,=1 is taken.
For the unstrained graphdiyne, there are four independent hopping amplitudes t,t,,t,,t,, and the corresponding
values are listed in Table 1. Because of its C,, symmetry, we have t,=t,,=t,, =t =t =t;, =t,;

t, =ty =te=t, o=t =t =t to=t, =to=t =t =t, o=t tae=t,, =t =t =ty =tg,s =t,, respectively.

For the case under biaxial strains, the Hamiltonian is the same as that for the unstrained case due to the same

symmetry.
Table S1. Thevaluesof t and ¢ for different strains
strain t (eV) t, (eV) t; (eV) t, (eV) 6
no strain -3.4655 -3.5371 -4.0475 -3.6752 60
biaxial (5%) -3.2675 -3.2360 -3.8162 -3.3662 60
biaxial (9%) -3.0694 -2.9159 -3.5850 -3.0692 60
biaxial (15%) -2.6734 -2.2156 -3.1224 -2.3492 60

For graphene, there is only one independent parameter t=-2.7(eV).

2. Tight-binding model for graphdiyne under uniaxial strain
For the uniaxial strain (armchair and zigzag direction), there are eight independent t; due to the broken
symmetry of graphdiyne’ t,=tg=t,=ts=t, L=t :tl, v L=t =l =he =, =1, :tz, v s =lose =155

t8,14 :t9,15 :t11,17 :t12,18 :t3, ) t-13,16 =t16,13 =t4 ; 1:14,17 :t15,18 :t17,14 :t18,15 :t4, . The Hamiltonian matrix has the form of
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Table S2. The fitting values of t for different cases
strain t,(eV) t'(eV) t,(eV) t, (eV) t,(eV) t, (eV) t,(eV) t, (eV) o
Armchair (5%) -3.20 -3.11 -3.20 -3.37 -3.73 -3.81 -3.36 -3.52 58.13
Armchair (9%) -3.02 -2.94 -2.49 -3.16 -3.27 -3.58 -2.69 -3.30 56.69
Armchair(15%) -2.62  -249  -1.76  -2.76  -298  -312  -208  -288 5454
Zigzag (5%) -3.11 -3.19 -3.34 -2.89 -3.72 -3.64 -3.45 -3.30 62.87
Zigzag (9%) -2.83 -2.99 -3.47 -2.87 -3.49 -3.70 -3.12 -2.85 62.90
Zigzag (15%)  -2.27 -1.98 -3.53 -2.47 -3.34 -3.53 -3.53 -2.30 64.42
Zigzag (19%) -2.06 -3.66 -3.21 -2.25 -3.11 -3.27 -3.29 -1.91 65.79

3. The electron density change of the valence band maximum

The electron density change at the valence band maximum for different cases is shown in Fig. S2.
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Fig. S2. The distribution of electron density of the valence band maximum under (a) no strain, biaxial strains
of (b) 9% and (c) 15%, uniaxial tensile strains along the armchair direction with the strain of (d) 5%, (e) 9%

and (f) 15%, and along the zigzag direction with the strain of (g) 5%, (h) 15% and (i) 19%.

4. The hole density change of the conduction band minimum

The hole density change at the conduction band minimum for different cases is shown in Fig. S3

Fig. S3. The distribution of hole density of the conduction band minimum under (a) no strain, biaxial strains of
(b) 9% and (c) 15%, uniaxial tensile strains along the armchair direction with the strain of (d) 5%, (e) 9% and

(f) 15%, and along the zigzag direction with the strain of (g) 5%, (h) 15% and (i) 19%.



