Supplementary Information

Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes

H. Q. Shi, A. S. Barnard, and I. K. Snook

Ionization Potential

Figure S1. The ionization potential, respect to the average value in various sets, is given for (a) all the vacancy structures along the path A in AC-edged radical, mono-hydride, and di-hydride terminated hexagonal graphene nano-flakes, (b) all the vacancy structures along the path B in AC-edged radical, mono-hydride, and di-hydride terminated hexagonal graphene nano-flakes, and (c) all the vacancy structures along the path B in ZZ-edged radical, mono-hydride, and di-hydride terminated hexagonal graphene nano-flakes.

Electron Affinity

Figure S2. The electron affinity, respect to the average value in various sets, is given for (a) all the vacancy structures along the path A in AC-edged radical, mono-hydride, and di-hydride terminated hexagonal graphene nano-flakes, (b) all the vacancy structures along the path B in AC-edged radical, mono-hydride, and di-hydride terminated hexagonal graphene nano-flakes, and (c) all the vacancy structures along the path B in ZZ-edged radical, mono-hydride, and di-hydride terminated hexagonal graphene nano-flakes.