Supplementary Infos

S1 Calculation of the different contributions to free energy of a molecule in the gas phase $Fvib_T$, $Frot_T$, $Ftrans_T$ evaluations The different contributions to free energy $Fvib_T$, $Ftrans_T$, $Frot_T$ of DAE and water are calculated considering a perfect gas.⁸⁹

Fvib is defined as $Fvib = ZPE + Fvib_T$

Where

$$ZPE = \mathcal{N}\left(\frac{1}{2}\sum_{i}h\nu_{i}\right)$$

$$Fvib_{T} = \mathcal{N}\sum_{i}\frac{h\nu_{i}}{\left(\exp\left(\frac{h\nu_{i}}{kT}\right)-1\right)} - \mathcal{N}kT\left[\sum_{i}\frac{\left(\frac{h\nu_{i}}{kT}\right)}{\left(\exp\left(\frac{h\nu_{i}}{kT}\right)-1\right)} - \ln\left(1-\exp\left(\frac{-h\nu_{i}}{kT}\right)\right)\right]$$

where \mathcal{N} is the Avogadro number, k the Boltzmann constant, T the temperature, h the Planck constant, and v_i the vibrational modes.

The rotational free energy contribution of each reactant/product in the gas phase (water and DAE) was calculated with the formula:

$$Frot_{T} = \mathcal{N} kT \left\{ \frac{3}{2} - \left[\ln \left(\frac{\sqrt{\pi}}{\sigma} \left(\frac{8\pi^{2}kT}{h^{2}} \right)^{\frac{3}{2}} \sqrt{A_{e} \times B_{e} \times C_{e}} \right) + \frac{3}{2} \right] \right\}$$

where σ is a symmetry number, and A_e, B_e, C_e are inertial moments with respect to the molecule axis.

The translational free energy of each reactant/product in the gas phase (water and DAE) was calculated with the Sackur-Tetrode formula.⁹⁰⁻⁹²

$$Ftrans_{T} = \mathcal{N} kT \left[\frac{3}{2} - \left(\ln q_{t} + 1 + 3/2\right)\right]$$

where

$$q_t = \left(\frac{2\pi nk_BT}{h^2}\right)^{3/2} \frac{k_BT}{P}$$

where m is the molecule (DAE or water) mass.

	TiO ₂ -4H ₂ O	DAE ^{gas}	H2O ^{gas}
ZPE	2.96	2.91	0.55
Fvib _T	0.32	0.08	0.04
Frot _T		-0.28	-0.11
Ftrans _T		-0.46	-0.41

We calculated, in eV, in standard conditions (T = 298K and P = 1 atm)

S2 Thermal Contributions to Free Energy of the adsorbed DAE molecule

When the 'surface' includes an adsorbate, G(surf) can be decomposed in two components, G(mol-ads) and G(surf-noads). G(surf-noads) is the contribution of the surface without adsorbate and G(mol-ads) the contribution of the adsorbed molecules. To evaluate free energy balance before and after adsorption, we consider only variations of the component G(surf) = G(mol-ads), which means that the properties of the adsorbed molecule (vibrational, rotational and translational) are taken into account but not variations of free energy of the bulk phase (TiO₂). In this context, for each adsorbed molecule, we consider that $Frot(mol-ads)_T = 2/3$ $Frot(mol)_{T,gas}$ when this molecule has no nearest neighbor in the same [010] row and otherwise $Frot(mol-ads)_T = 0$; thus $Frot(mol-ads)_T = 2/3Frot(mol)_{T,gas}$, $Frot(mol-ads)_T = 2/3Frot(mol)_{T,gas}$ and $Frot(mol-ads)_T = 0$ for one, two, three and four adsorbed molecules per cell, respectively. Then we write $\Delta Frot_{ads} = Frot(mol-ads)_T - Frot(mol)_{T,gas}$

Similar considerations are valid for the Ftrans(surf) term. In this case, the translational free energy of adsorbed DAE molecules are calculated considering that $Ftrans(mol-ads)_T = 2/3$ $Ftrans(mol)_{T,gas}$ for DAE molecules adsorbed at low coverages (1.28 and 2.56 molecule/nm²), and zero in all other cases. Then we write $\Delta Ftrans_{ads} = Ftrans(mol-ads)_T - Frot(mol)_{T,gas}$. For DAE substituting water molecules, the translational energy is zero.

Table SI: Calculated values (in eV) of the vibrational, translation al and rotational free energies of the different configurations considered. 'Ads' refers to DAE adsorbed above a water layer. "Subst" refers to DAE adsorbed in substitution of water molecules.

System and coverage (molecule/m ²)	Fvib(T) (ads)	Frot(ads)	Ftrans(ads)
DAE Ads $\theta=1.28$	0.46	-0.18	-0.30
2 DAE Ads θ =2.56	0.65	-0.37	-0.61
3 DAE ads θ =3.84	0.82	-0.18	0
4 DAE Ads $\theta = 5.12$	1.09	0	0
DAE subst $\theta=1.28$	0.28	0	0
$\begin{array}{c} 2 \text{ DAE subst} \\ \theta = 2.56 \end{array}$	0.32	0	0
3 DAE subst $\theta=3.84$	0.34	0	0
4 DAE on TiO ₂ θ =5.12	0.54	0	0

S3 Configurational Entropy

Configurational entropy was also considered for each DAE coverage. For each system, the – TSconfig term to the free energy estimation:

Sconf = k Ln[(N - n)!/(N!n!)] for n sites occupied by DAE over N surface sites.

Applying the Stirling formula yields

$$TSconfig = \mathcal{N} \mathcal{K} \mathcal{T} \ln \left((1 + \frac{n}{N}) + \frac{n}{N} \ln(1 + \frac{n}{N}) \right)$$

TSconfig can thus be estimated per surface area. This value was found to be negligible in the present system.