Supplementary Information

Role of Aromatic Residues in Amyloid Fibril Formation of Human Calcitonin by Solid-State ¹³C NMR and Molecular Dynamics Simulation

Hikari Itoh-Watanabe¹, Miya Kamihira-Ishijima², Namsrai Javkhlantugs¹, Ryozo Inoue¹, Yuki Itoh¹, Hiroshi Endo¹, Satoru Tuzi², Hazime Saito² Kazuyoshi Ueda¹, Akira Naito^{1*}

¹Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan, ²Graduate School of Life Science, University of Hyogo, Harime Science Garden City, Kamigori, Hyogo 678-1297, Japan

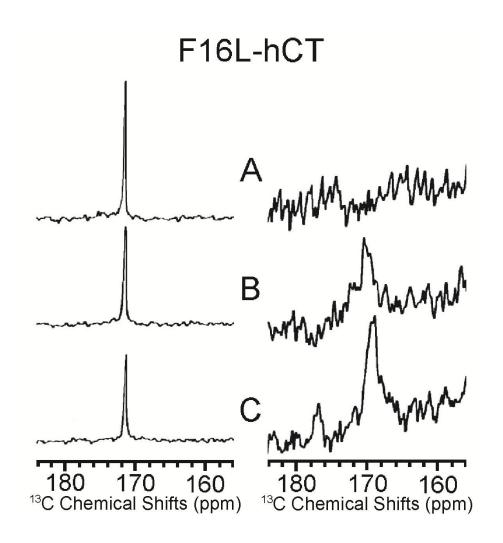


Fig. S1. Time course (A: 11 hr, B:66 hr, C:108 hr) of DD-MAS (left) and CP-MAS (right) NMR signals in $[1-^{13}C]$ Gly10, $[3-^{13}C]$ Ala26-labeled F16L-hCT (**III**) at pH 3.

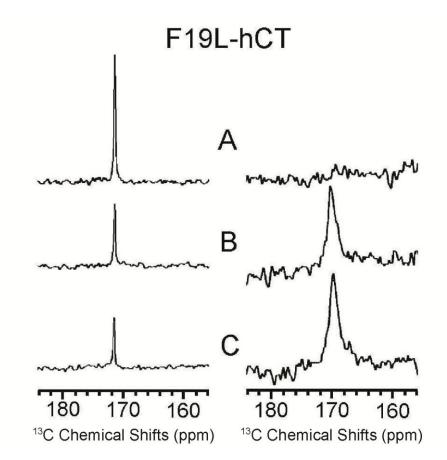


Fig. S2. Time course (A: 9 hr, B: 67 hr, C:121 hr) of DD-MAS (left) and CP-MAS (right) NMR signals in [1-¹³C]Gly10, [3-¹³C]Ala26-labeled F19L-hCT (**IV**) at pH 3.

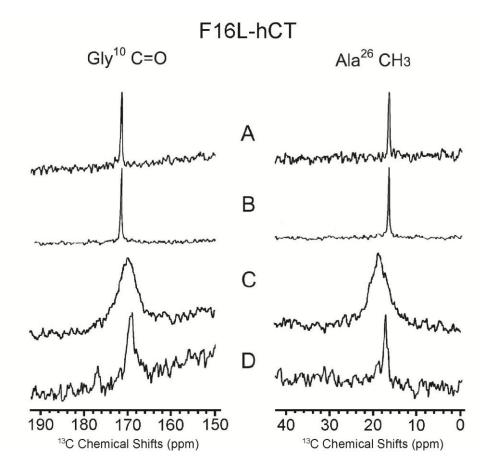


Fig. S3 DD-MAS (A, B) and CP-MAS (C, D) NMR spectra of [1-¹³C]Gly10 (left), [3-¹³C]Ala26 (right) -labeled F16L-hCT at pH 7.5 (A, C) and pH 3 (B, D)

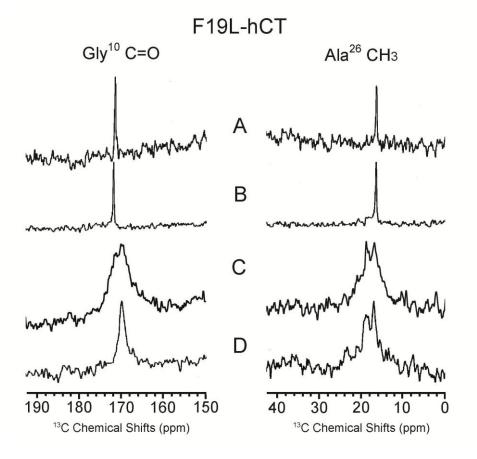


Fig. S4 DD-MAS (A, B) and CP-MAS (C, D) NMR spectra of [1-¹³C]Gly10 (left), [3-¹³C]Ala26 (right) -labeled F19L-hCT at pH 7.5 (A, C) and pH 3 (B, D)