Electrodeposition of germanium from the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide- Electronic Supplementary Information

Minxian Wu^a, Neil R. Brooks^b, Stijn Schaltin^a, Koen Binnemans^b, Jan Fransaer^{a,*}

 ^a Department of Metallurgy and Materials Engineering, KU Leuven - University of Leuven, Kasteelpark Arenberg 44, P.O. Box 2450 B-3001 Heverlee, Belgium
^b Department of Chemistry, KU Leuven - University of Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Heverlee, Belgium

 * Corresponding author, jan.fransaer@mtm.kuleuven.be

Figure 1: Plot of $\ln k$ vs. overpotential η in the solution of 0.1 M [GeCl₄(BuIm)₂] in [BMP][DCA] at 50 °C. The working electrode was a platinum disk ($\phi = 3$ mm) and the counter and reference electrodes were *n*-type germanium.

Figure 2: EDX spectrum of the organic layer formed on *n*-Type germanium wafer counter electrode during electrode position of germanium in a 0.1 M $[\text{GeCl}_4(\text{BuIm})_2]$ solution in [BMP][DCA].

Figure 3: Frequency change on a platinum coated EQCM crystal in neat [BMP][DCA] at room temperature, and a constant current 0.05 A dm^{-2} was applied. The counter and reference electrodes were platinum.

Figure 4: Sequential cyclic voltammograms of a 0.05 M ferrocene solution in [BMP][DCA] on a platinum disk ($\phi = 1 \text{ mm}$) at room temperature. The counter and reference electrodes were platinum and the scan rate was 5 mV s⁻¹.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2013

Figure 5: SEM images of the germanium film deposited on a copper disk from 0.1 M $[GeCl_4(BuIm)_2]$ in 1:1 molar ratio [BMP][DCA] and [BMP]Cl at 100 °C. The counter electrode was an *n*-type germanium wafer.

Figure 6: SEM images and EDX spectrum of the germanium film deposited on a hydrogen terminated *n*-type silicon wafer from 0.1 M [GeCl₄(BuIm)₂] in 1:1 molar ratio [BMP][DCA] and [BMP]Cl at 100 °C, applied potential: -0.75 V (vs. Ge), theoretical thickness: 0.40 μ m. The counter electrode was an *n*-type germanium wafer.