ELECTRONIC SUPPLEMENTARY INFORMATION

Probing micro-solvation in "numbers": The case of neutral dipeptides in water.

Panteleimon G Takis,^a Konstantinos D. Papavasileiou,^b Loukas D. Peristeras,^c Vasilios S. Melissas^{*b} and Anastassios N. Troganis^{*a}

^a Department of Biological Applications and Technology, Biophysics Laboratory, University of Ioannina, GR-451 10 Ioannina, Greece,

^b Department of Chemistry, University of Ioannina, GR-451 10 Ioannina, Greece

^c Scienomics Sarl, 17 square Edouard VII, 75009 Paris, France

*Authors to whom correspondence should be addressed:

Vasilios S. Melissas: E-mail: melissas@chem.auth.gr, Tel.: +30-26-5100-8471, Fax: +30-26-5100-8682 and Anastassios N. Troganis: E-mail: atrogani@cc.uoi.gr, Tel.: +30-26-5100-8851, Fax: +30-26-5100-8889

Index

Page	:S
Further details for eqns (2) and (5)	2
The case of internal motion (Lipari and Szabo)	3
From eqns (5) and (6) to the calculation of the weighted correlation times	5
Full expression of eqn (11)	6
The measured relaxation times (T_1) for ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ nuclei at three magnetic fieldsS	7
Table S1S	7
Table S2S	8
Comparison between relaxation rates for $^{13}C_{\alpha}$ and $^{13}C_{\beta}$ nucleiS	9
Table S3S	9
Table S4S1	0
Table S5S1	1
Fig. S1	2
Dipeptides' correlation times ($\tau_{\rm c}$) from $^{13}C_{\alpha}$ and $^{13}C_{\beta}$ relaxation dataS1	3
Table S6S1	3
Dipeptides correlation times (τ_c) from $^{13}C_{\alpha}$ and $^{13}C_{\beta}$ relaxation data vs. their M_W	5
Table S7S1	5
Table S8	5
Fig. S2	6
Alanine Dipeptide–Fully optimized structure by DFT	7
Fig. S3	7
H-bonds interaction energies (E_{int}) calculation	8
Table S9S1	8
Fig. S4	9
Alanine Dipeptide/10 H2Os complex	0
Fig. S5	0
Supplementary References	1
Geometrical details and energetics of fully optimized $AD/(H_2O)_n$ (<i>n</i> =0, 7-9) supermoleculesS2	2
AD/(H ₂ O) ₀ (Fig. S3)	2
AD/(H ₂ O) ₇ (Fig. 4a)	4
AD/(H ₂ O) ₈ (Fig. 4b)	6
AD/(H ₂ O) ₉ (Fig. 4c)	8

Further details for eqns (2) and (5)

As it was mentioned, scalar contribution is insignificant to T_1 determination and it can be calculated by the following equation:

$$\frac{1}{T_{1,C_iN,sc}} = \frac{16\pi^2 J_{C_iN}^2 T_{2,N}}{3\left[1 + \left(\omega_C - \omega_N\right)^2 T_{2,N}^2\right]},$$
(S1)

since ${}^{1}J_{C_{i}N}$ coupling constant and $T_{2,N}$ relaxation time of the nitrogen atoms are known. ${}^{1}J_{C_{i}N}$ coupling constant is approximately equal to 30 Hz, whereas $T_{2,N}$ values are determined by the width at the half height ($\Delta v_{1/2}$) of the 14 N-NMR peak. Our previous studies, concerning amino acids¹ and acetyl-amino acids² amino and imino groups' hydration, respectively, indicated that $T_{2,N}$ values for amino acids lie between 36 to 108 Hz and for acetyl-amino acids between 710 to 1495 Hz. Nevertheless, the scalar contribution to T_1 relaxation is very small (< 0.01 %) and the overall estimated error in the calculation of the relaxation times ratio [eqn (5)] is less than 10⁻⁶ %, if no subtraction of the scalar contribution takes place.

In fact, none of the terms in eqn (2) can be calculated precisely, mainly due to the variation in distance *r* between *i*-carbon and *i*- or *j*-protons for all studied molecules and it cannot be defined accurately. However, X-ray diffraction measurements showed that the mean proton-carbon (C-H) distance is approximately ~1.1 Å.³ Moreover, our research group calculated by the means of DFT and MP2 theoretical calculations² the above distance for various amino acids and dipeptides resulting in 1.085-1.095 Å. This small variation in proton-carbon distance contributes quite significantly (6 % deviation) to the τ_c calculation.

Consequently, the accurate determination of the correlation time, τ_c , demands either the knowledge of the exact proton-carbon distances or an independent of them novel method for τ_c calculation.

The case of internal motion (Lipari and Szabo)

According to Lipari and Szabo,⁴ in the case of internal motion the spectral density is given by the expression:

$$J_{i}(\omega) = \frac{2}{5} \left(\frac{S^{2} \tau_{C}}{1 + \omega^{2} \tau_{C}^{2}} + \frac{(1 - S^{2}) \tau}{1 + \omega^{2} \tau} \right),$$
(S2)

where S is a generalized order parameter, which is the measure of motion's spatial restriction degree and τ equals to:

$$\tau^{-1} = \tau_C^{-1} + \tau_e^{-1} \,, \tag{S3}$$

where τ_e is an effective correlation time, which is a measure of the internal motion's rate. Thus, the longitudinal relaxation time (T_1) , described by eqn (1), will be the sum of two terms. Namely, one term will be characterized by the correlation time, τ_c , and multiplied by the factor S^2 , while the other term will be characterized by the correlation time $\tau_c \tau_e / (\tau_c + \tau_e)$ and multiplied by the factor $(1-S^2)$:

$$\frac{1}{T_{1,i}} = S^2 f(\omega, \tau_C) + (1 - S^2) f(\omega, \frac{\tau_C \tau_e}{\tau_C + \tau_e}),$$
(S4)

where $f(\omega, \tau_c)$ is the second term in eqn (1).

Considering the above, someone could wonder if eqn (5) still permits the accurate calculation of τ_c . The error of using eqn (5) as is (without taking into consideration the effect of the internal motion), can be calculated by expanding eqn (5), after the inclusion of eqn (S4) in it, in a Maclaurin series (since τ_e is expected to be very small, namely few ps) around $\tau_e = 0$ s.

Inclusion of eqn (S4) to eqn (5) leads to:

$$f(\omega_{l},\omega_{2},\tau_{c},\tau_{e}) = \frac{\begin{cases} S^{2} \left[\frac{3}{1+\tau_{c}^{2}\omega_{1c}^{2}} + \frac{1}{1+\tau_{c}^{2}(\omega_{lc}-\omega_{lH})^{2}} + \frac{6}{1+\tau_{c}^{2}(\omega_{lc}+\omega_{lH})^{2}} \right] + \\ \frac{\left\{ \frac{(1-S^{2})\tau_{e}}{\tau_{c}+\tau_{e}} \right] \left[\frac{3}{1+\frac{\tau_{c}^{2}\tau_{e}^{2}\omega_{1c}^{2}}{(\tau_{c}+\tau_{e})^{2}} + \frac{1}{1+\frac{\tau_{c}^{2}\tau_{e}^{2}(\omega_{lc}-\omega_{lH})^{2}}{(\tau_{c}+\tau_{e})^{2}} + \frac{6}{1+\frac{\tau_{c}^{2}\tau_{e}^{2}(\omega_{lc}+\omega_{lH})^{2}}{(\tau_{c}+\tau_{e})^{2}} \right] \\ f(\omega_{l},\omega_{2},\tau_{c},\tau_{e}) = \frac{S^{2} \left[\frac{3}{1+\tau_{c}^{2}\omega_{2c}^{2}} + \frac{1}{1+\tau_{c}^{2}(\omega_{2c}-\omega_{2H})^{2}} + \frac{6}{1+\tau_{c}^{2}(\omega_{2c}+\omega_{2H})^{2}} \right] + \\ \left\{ \frac{(1-S^{2})\tau_{e}}{\tau_{c}+\tau_{e}} \left[\frac{3}{1+\frac{\tau_{c}^{2}\tau_{e}^{2}\omega_{2c}}{(\tau_{c}+\tau_{e})^{2}} + \frac{1}{1+\frac{\tau_{c}^{2}\tau_{e}^{2}(\omega_{2c}-\omega_{2H})^{2}}{(\tau_{c}+\tau_{e})^{2}} + \frac{6}{1+\frac{\tau_{c}^{2}\tau_{e}^{2}(\omega_{2c}+\omega_{2H})^{2}}{(\tau_{c}+\tau_{e})^{2}}} \right] \right\}$$
(S5)

Expansion of the above equation in a Maclaurin series results in:

$$f(\omega_{1},\omega_{2},\tau_{c},\tau_{e}) = f(\omega_{1},\omega_{2},\tau_{c},0) + \sum_{n=1}^{\infty} \frac{1}{n!} f^{n}(\omega_{1},\omega_{2},\tau_{c},0) \tau_{e}^{n},$$
(S6)

where f^n is the n-th derivative of equation f. The term $f(\omega_1, \omega_2, \tau_C, 0)$ represents the T_1 ratio at two different magnetic fields when no internal motion is taken into consideration [named eqn (5)] therefore, the term $\sum_{n=1}^{\infty} \frac{1}{n!} f^n(\omega_1, \omega_2, \tau_C, 0) \tau_e^n$ represents the error of the approximation.

Assuming that S = 0.8, since slower motion dominates in relaxation processes (according to Lipari *S* value is expected to be almost one), $\tau_c = 10^{-10}$ s, $\tau_e = 10^{-11}$ s, ω_1 are the proton and carbon resonances at 250.13 and 62.895 MHz and ω_2 are the resonances at 500.13 and 125.758 MHz respectively, the calculated error is -0.07 %. As a result, the estimated error in eqn (5) is much less than 0.1 %, proving that eqn (5) still leads to the accurate calculation of the correlation time, τ_c .

From eqns (5) and (6) to the calculation of the weighted correlation times

The inclusion of eqn (1) to eqns (5) and (6) results in two equations whose expansion in a Maclaurin series until the 3^{rd} term leads to:

$$\frac{\frac{1}{\left(T_{1,O,i}\right)_{1}}}{\frac{1}{\left(T_{1,O,i}\right)_{2}}} = 1 - \frac{1}{10} \left(10\omega_{1C}^{2} - 10\omega_{2C}^{2} + 10\omega_{1C}\omega_{1H} + 7\omega_{1H}^{2} - 10\omega_{2C}\omega_{2H} - 7\omega_{2H}^{2}\right)\tau_{C}^{2}$$
(S7)

and

$$\frac{\frac{1}{\left(T_{1,O,i}\right)_{1}}}{\left(\overline{T_{1,O,i}\right)_{2}}} = 1 - \frac{1}{10} \left(10\omega_{1C}^{2} - 10\omega_{2C}^{2} + 10\omega_{1C}\omega_{1H} + 7\omega_{1H}^{2} - 10\omega_{2C}\omega_{2H} - 7\omega_{2H}^{2}\right) \times \left[P_{b} \left(1 + 2P_{\alpha}\right)\tau_{C,b}^{2} - 4P_{b}P_{\alpha}\tau_{C,b}\tau_{C,\alpha} + \left(1 + 2P_{b}\right)P_{\alpha}\tau_{C,\alpha}^{2}\right]$$
(S8)

Furthermore, taking into consideration that the 1st terms of eqn (S7) and eqn (S8) are equal, lead to their 2nd terms equality and a 2nd degree polynomial whose solution around τ_c results in the weighted average calculation of the correlation times through eqn (S9):

$$\tau_{C} = \sqrt{P_{b} \left(1 + 2P_{a}\right) \tau_{C,b}^{2} - 4P_{b} P_{a} \tau_{C,b} \tau_{C,\alpha} + \left(1 + 2P_{b}\right) P_{a} \tau_{C,\alpha}^{2}} \tag{S9}$$

Full expression of eqn (11)

$$\begin{aligned} \frac{1}{\left(T_{1,0,i}\right)_{1}} &= f\left(\omega_{1},\omega_{2},M_{w}\right) = \\ \frac{1}{\left(T_{1,0,i}\right)_{2}} &= f\left(\omega_{1},\omega_{2},M_{w}\right) = \\ &\left\{ \begin{aligned} P_{a} c M_{w} \left[\frac{1}{1 + \left(\omega_{1c} - \omega_{1H}\right)^{2} \left(cM_{w}\right)^{2}} + \frac{3}{1 + \omega_{1c}^{2} \left(cM_{w}\right)^{2}} + \frac{6}{1 + \left(\omega_{1c} + \omega_{1H}\right)^{2} \left(cM_{w}\right)^{2}} \right] + \\ P_{b} \left(cM_{w} + 18N_{w}\right) \left[\frac{1}{1 + \left(\omega_{1c} - \omega_{1H}\right)^{2} \left(cM_{w} + 18N_{w}\right)^{2}} + \frac{3}{1 + \omega_{1c}^{2} \left(cM_{w} + 18N_{w}\right)^{2}} + \frac{6}{1 + \left(\omega_{1c} + \omega_{1H}\right)^{2} \left(cM_{w} + 18N_{w}\right)^{2}} \right] \right] \\ &\left[\begin{aligned} P_{a} c M_{w} \left[\frac{1}{1 + \left(\omega_{2c} - \omega_{2H}\right)^{2} \left(cM_{w}\right)^{2}} + \frac{3}{1 + \omega_{2c}^{2} \left(cM_{w} + 18N_{w}\right)^{2}} + \frac{6}{1 + \left(\omega_{2c} + \omega_{2H}\right)^{2} \left(cM_{w} + 18N_{w}\right)^{2}} \right] + \\ P_{b} \left(cM_{w} + 18N_{w}\right) \left[\frac{1}{1 + \left(\omega_{2c} - \omega_{2H}\right)^{2} \left(cM_{w} + 18N_{w}\right)^{2}} + \frac{3}{1 + \omega_{2c}^{2} \left(cM_{w} + 18N_{w}\right)^{2}} + \frac{6}{1 + \left(\omega_{2c} + \omega_{2H}\right)^{2} \left(cM_{w} + 18N_{w}\right)^{2}} \right] \end{aligned}$$

The measured relaxation times (T_1) for ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ nuclei at three magnetic fields

Table S1.	The ${}^{13}C_{\alpha}$	nuclei	measured	T_1	values	(at	298 K)	of eac	h dipeptide	at	three	magnetic	fields
(± indicates	the StdDe	v with 1	n = 20).										

			pH = 6.0	
Dipeptides	$\mathbf{M_W}^a$	500 MHz	400 MHz	250 MHz
$(-NH_2 \rightarrow -COOH)$			T_1 (s) for ${}^{13}C_{\alpha}$	
Ala–Gly	146.14	$1.713 \pm 0.036 - 0.846 \pm 0.011$	$1.660 \pm 0.032 - 0.819 \pm 0.014$	$1.600 \pm 0.031 - 0.788 \pm 0.012$
Gly–Ala	146.14	$0.834 \pm 0.021 - 1.681 \pm 0.036$	$0.806 \pm 0.018 - 1.623 \pm 0.032$	$0.776 \pm 0.013 - 1.565 \pm 0.023$
Ala–Ala	160.17	$1.291 \pm 0.019 - 1.292 \pm 0.021$	$1.247 \pm 0.024 - 1.250 \pm 0.022$	$1.198 \pm 0.026 - 1.202 \pm 0.025$
Gly–Ser	162.14	$0.738 \pm 0.013 - 1.450 \pm 0.024$	$0.712 \pm 0.012 - 1.398 \pm 0.033$	$0.687 \pm 0.016 - 1.347 \pm 0.032$
Gly-Leu	188.23	$0.583 \pm 0.010 - 1.116 \pm 0.034$	$0.559 \pm 0.008 - 1.080 \pm 0.029$	$0.536 \pm 0.010 - 1.035 \pm 0.026$
Val–Ser	204.20	$1.186 \pm 0.028 - 1.111 \pm 0.031$	$1.138 \pm 0.031 - 1.074 \pm 0.026$	$1.090 \pm 0.028 - 1.025 \pm 0.027$
Val–Thr	218.30	$1.008 \pm 0.029 - 0.885 \pm 0.021$	$0.965 \pm 0.024 - 0.845 \pm 0.018$	$0.911 \pm 0.028 - 0.803 \pm 0.018$
Thr-Leu	232.30	$0.890 \pm 0.023 - 0.824 \pm 0.025$	$0.845 \pm 0.018 - 0.783 \pm 0.016$	$0.801 \pm 0.021 - 0.743 \pm 0.018$
Ala–Phe	236.30	$0.908 \pm 0.027 - 0.907 \pm 0.024$	$0.863 \pm 0.022 - 0.860 \pm 0.020$	$0.815 \pm 0.020 - 0.815 \pm 0.016$
Phe-Ala	236.30	$0.957 \pm 0.030 - 0.966 \pm 0.035$	$0.917 \pm 0.026 - 0.919 \pm 0.021$	$0.862 \pm 0.018 - 0.869 \pm 0.014$
Val-Met	248.30	$0.827 \pm 0.024 - 0.905 \pm 0.033$	$0.784 \pm 0.020 - 0.856 \pm 0.016$	$0.738 \pm 0.017 - 0.809 \pm 0.019$
Tyr–Ala	252.30	$0.892 \pm 0.031 - 0.883 \pm 0.028$	$0.845 \pm 0.021 - 0.834 \pm 0.017$	$0.795 \pm 0.019 - 0.784 \pm 0.011$
Met-Leu	262.40	$0.787 \pm 0.015 - 0.803 \pm 0.023$	$0.742 \pm 0.017 - 0.760 \pm 0.014$	$0.698 \pm 0.014 - 0.712 \pm 0.016$
Phe-Val	264.30	$0.817 \pm 0.022 - 0.776 \pm 0.018$	$0.775 \pm 0.020 - 0.733 \pm 0.018$	$0.724 \pm 0.021 - 0.687 \pm 0.017$

 $^{\alpha}$ M_W is the molecular weight of dipeptides' zwitterionic form.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pH = 6.0						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dipeptides	${ m M_W}^a$	500 MHz	400 MHz	250 MHz				
Ala-Gly146.14 $0.565\pm 0.008 - //$ $0.548\pm 0.010 - //$ $0.527\pm 0.010 - //$ Gly-Ala146.14 $//-0.559\pm 0.008$ $//-0.540\pm 0.012$ $//-0.520\pm 0.010$ Ala-Ala160.17 $0.427\pm 0.007-0.428\pm 0.011$ $0.412\pm 0.012-0.451\pm 0.012$ $0.396\pm 0.011-0.398\pm 0.010$ Gly-Ser162.14 $//-0.729\pm 0.016$ $//-0.704\pm 0.015$ $//-0.678\pm 0.013$ Gly-Leu188.23 $//-0.563\pm 0.014$ $//-0.543\pm 0.011$ $//-0.520\pm 0.014$ Val-Ser204.20 $1.179\pm 0.028-0.591\pm 0.015$ $1.131\pm 0.028-0.566\pm 0.014$ $1.076\pm 0.025-0.540\pm 0.014$ Val-Thr218.30 $0.995\pm 0.021-0.924\pm 0.020$ $0.948\pm 0.024-0.882\pm 0.018$ $0.902\pm 0.018-0.838\pm 0.018$ Thr-Leu232.30 $0.892\pm 0.019-0.405\pm 0.015$ $0.285\pm 0.012-0.427\pm 0.010$ $0.269\pm 0.010-0.402\pm 0.011$ Ala-Phe236.30 $0.478\pm 0.014-0.318\pm 0.010$ $0.456\pm 0.016-0.302\pm 0.011$ $0.433\pm 0.011-0.284\pm 0.008$ Val-Met248.30 $0.822\pm 0.019-0.445\pm 0.011$ $0.778\pm 0.017-0.422\pm 0.012$ $0.731\pm 0.015-0.398\pm 0.011$ Tyr-Ala252.30 $0.441\pm 0.022-0.291\pm 0.018$ $0.418\pm 0.017-0.276\pm 0.013$ $0.394\pm 0.012-0.260\pm 0.011$ Phe-Val264.30 $0.400\pm 0.012-0.772\pm 0.018$ $0.380\pm 0.014-0.375\pm 0.014$ $0.354\pm 0.011-0.685\pm 0.011$	$(-NH_2 \rightarrow -COOH)$			T_1 (s) for ${}^{13}C_{\beta}$					
Gly-Ala146.14// - 0.559 \pm 0.008// - 0.540 \pm 0.012// - 0.520 \pm 0.010Ala-Ala160.170.427 \pm 0.007 - 0.428 \pm 0.0110.412 \pm 0.012 - 0.451 \pm 0.0120.396 \pm 0.011 - 0.398 \pm 0.010Gly-Ser162.14// - 0.729 \pm 0.016// - 0.704 \pm 0.015// - 0.678 \pm 0.013Gly-Leu188.23// - 0.563 \pm 0.014// - 0.543 \pm 0.011// - 0.520 \pm 0.014Val-Ser204.201.179 \pm 0.028 - 0.591 \pm 0.0151.131 \pm 0.028 - 0.566 \pm 0.0141.076 \pm 0.025 - 0.540 \pm 0.014Val-Thr218.300.995 \pm 0.021 - 0.924 \pm 0.0200.948 \pm 0.024 - 0.882 \pm 0.0180.902 \pm 0.018 - 0.368 \pm 0.011Ala-Phe236.300.300 \pm 0.010 - 0.405 \pm 0.0150.285 \pm 0.012 - 0.427 \pm 0.0100.269 \pm 0.010 - 0.402 \pm 0.011Phe-Ala236.300.478 \pm 0.014 - 0.318 \pm 0.0110.778 \pm 0.017 - 0.422 \pm 0.0120.731 \pm 0.015 - 0.398 \pm 0.011Tyr-Ala252.300.441 \pm 0.022 - 0.291 \pm 0.0180.418 \pm 0.017 - 0.276 \pm 0.0130.394 \pm 0.014 - 0.350 \pm 0.011Phe-Val264.300.400 \pm 0.012 - 0.772 \pm 0.0180.380 \pm 0.014 - 0.375 \pm 0.0140.354 \pm 0.014 - 0.355 \pm 0.011	Ala–Gly	146.14	0.565±0.008 - //	$0.548 \pm 0.010 - //$	$0.527 \pm 0.010 - //$				
Ala-Ala160.17 $0.427 \pm 0.007 - 0.428 \pm 0.011$ $0.412 \pm 0.012 - 0.451 \pm 0.012$ $0.396 \pm 0.011 - 0.398 \pm 0.010$ Gly-Ser162.14// - 0.729 \pm 0.016// - 0.704 \pm 0.015// - 0.678 \pm 0.013Gly-Leu188.23// - 0.563 \pm 0.014// - 0.543 \pm 0.011// - 0.520 \pm 0.014Val-Ser204.201.179 \pm 0.028 - 0.591 \pm 0.0151.131 \pm 0.028 - 0.566 \pm 0.0141.076 \pm 0.025 - 0.540 \pm 0.014Val-Thr218.30 $0.995 \pm 0.021 - 0.924 \pm 0.020$ $0.948 \pm 0.024 - 0.882 \pm 0.018$ $0.902 \pm 0.018 - 0.838 \pm 0.018$ Thr-Leu232.30 $0.892 \pm 0.019 - 0.405 \pm 0.015$ $0.285 \pm 0.012 - 0.427 \pm 0.010$ $0.269 \pm 0.010 - 0.402 \pm 0.011$ Ala-Phe236.30 $0.300 \pm 0.010 - 0.448 \pm 0.015$ $0.285 \pm 0.012 - 0.427 \pm 0.010$ $0.269 \pm 0.010 - 0.402 \pm 0.011$ Phe-Ala236.30 $0.478 \pm 0.014 - 0.318 \pm 0.010$ $0.456 \pm 0.016 - 0.302 \pm 0.011$ $0.433 \pm 0.011 - 0.284 \pm 0.008$ Val-Met248.30 $0.822 \pm 0.019 - 0.445 \pm 0.011$ $0.778 \pm 0.017 - 0.422 \pm 0.012$ $0.731 \pm 0.015 - 0.398 \pm 0.011$ Tyr-Ala252.30 $0.441 \pm 0.022 - 0.291 \pm 0.018$ $0.418 \pm 0.017 - 0.276 \pm 0.013$ $0.394 \pm 0.012 - 0.260 \pm 0.011$ Phe-Val264.30 $0.400 \pm 0.012 - 0.772 \pm 0.018$ $0.380 \pm 0.010 - 0.729 \pm 0.016$ $0.354 \pm 0.011 - 0.685 \pm 0.016$	Gly-Ala	146.14	$// - 0.559 \pm 0.008$	$// - 0.540 \pm 0.012$	$// - 0.520 \pm 0.010$				
Gly-Ser162.14// - 0.729 \pm 0.016// - 0.704 \pm 0.015// - 0.678 \pm 0.013Gly-Leu188.23// - 0.563 \pm 0.014// - 0.543 \pm 0.011// - 0.520 \pm 0.014Val-Ser204.201.179 \pm 0.028 - 0.591 \pm 0.0151.131 \pm 0.028 - 0.566 \pm 0.0141.076 \pm 0.025 - 0.540 \pm 0.014Val-Thr218.300.995 \pm 0.021 - 0.924 \pm 0.0200.948 \pm 0.024 - 0.882 \pm 0.0180.902 \pm 0.018 - 0.838 \pm 0.018Thr-Leu232.300.892 \pm 0.019 - 0.405 \pm 0.0150.854 \pm 0.018 - 0.388 \pm 0.0160.808 \pm 0.018 - 0.368 \pm 0.011Ala-Phe236.300.300 \pm 0.014 - 0.318 \pm 0.0100.456 \pm 0.016 - 0.302 \pm 0.0110.433 \pm 0.011 - 0.284 \pm 0.008Val-Met248.300.822 \pm 0.019 - 0.445 \pm 0.0110.778 \pm 0.017 - 0.422 \pm 0.0120.731 \pm 0.015 - 0.398 \pm 0.011Tyr-Ala252.300.441 \pm 0.022 - 0.291 \pm 0.0180.418 \pm 0.017 - 0.276 \pm 0.0130.394 \pm 0.014 - 0.350 \pm 0.011Met-Leu264.300.400 \pm 0.012 - 0.772 \pm 0.0180.380 \pm 0.010 - 0.729 \pm 0.0160.354 \pm 0.011 - 0.685 \pm 0.016	Ala–Ala	160.17	$0.427 \pm 0.007 - 0.428 \pm 0.011$	$0.412 \pm 0.012 - 0.451 \pm 0.012$	$0.396 \pm 0.011 - 0.398 \pm 0.010$				
Gly-Leu188.23// - 0.563 \pm 0.014// - 0.543 \pm 0.011// - 0.520 \pm 0.014Val-Ser204.201.179 \pm 0.028 - 0.591 \pm 0.0151.131 \pm 0.028 - 0.566 \pm 0.0141.076 \pm 0.025 - 0.540 \pm 0.014Val-Thr218.300.995 \pm 0.021 - 0.924 \pm 0.0200.948 \pm 0.024 - 0.882 \pm 0.0180.902 \pm 0.018 - 0.838 \pm 0.018Thr-Leu232.300.892 \pm 0.019 - 0.405 \pm 0.0150.854 \pm 0.018 - 0.388 \pm 0.0160.808 \pm 0.018 - 0.368 \pm 0.011Ala-Phe236.300.300 \pm 0.010 - 0.448 \pm 0.0150.285 \pm 0.012 - 0.427 \pm 0.0100.269 \pm 0.010 - 0.402 \pm 0.011Phe-Ala236.300.478 \pm 0.014 - 0.318 \pm 0.0100.456 \pm 0.016 - 0.302 \pm 0.0110.433 \pm 0.011 - 0.284 \pm 0.008Val-Met248.300.822 \pm 0.019 - 0.445 \pm 0.0110.778 \pm 0.017 - 0.422 \pm 0.0120.731 \pm 0.012 - 0.260 \pm 0.011Tyr-Ala252.300.441 \pm 0.022 - 0.291 \pm 0.0180.418 \pm 0.017 - 0.276 \pm 0.0130.394 \pm 0.014 - 0.350 \pm 0.011Phe-Val264.300.400 \pm 0.012 - 0.772 \pm 0.0180.380 \pm 0.010 - 0.729 \pm 0.0160.354 \pm 0.011 - 0.685 \pm 0.016	Gly-Ser	162.14	$// - 0.729 \pm 0.016$	$// - 0.704 \pm 0.015$	$// - 0.678 \pm 0.013$				
Val-Ser 204.20 $1.179 \pm 0.028 - 0.591 \pm 0.015$ $1.131 \pm 0.028 - 0.566 \pm 0.014$ $1.076 \pm 0.025 - 0.540 \pm 0.014$ Val-Thr 218.30 $0.995 \pm 0.021 - 0.924 \pm 0.020$ $0.948 \pm 0.024 - 0.882 \pm 0.018$ $0.902 \pm 0.018 - 0.838 \pm 0.018$ Thr-Leu 232.30 $0.892 \pm 0.019 - 0.405 \pm 0.015$ $0.854 \pm 0.018 - 0.388 \pm 0.016$ $0.808 \pm 0.018 - 0.368 \pm 0.011$ Ala-Phe 236.30 $0.300 \pm 0.010 - 0.448 \pm 0.015$ $0.285 \pm 0.012 - 0.427 \pm 0.010$ $0.269 \pm 0.010 - 0.402 \pm 0.011$ Phe-Ala 236.30 $0.478 \pm 0.014 - 0.318 \pm 0.010$ $0.456 \pm 0.016 - 0.302 \pm 0.011$ $0.433 \pm 0.011 - 0.284 \pm 0.008$ Val-Met 248.30 $0.822 \pm 0.019 - 0.445 \pm 0.011$ $0.778 \pm 0.017 - 0.422 \pm 0.012$ $0.731 \pm 0.015 - 0.398 \pm 0.011$ Tyr-Ala 252.30 $0.441 \pm 0.022 - 0.291 \pm 0.018$ $0.418 \pm 0.017 - 0.276 \pm 0.013$ $0.394 \pm 0.014 - 0.350 \pm 0.011$ Met-Leu 262.40 $0.389 \pm 0.013 - 0.396 \pm 0.011$ $0.368 \pm 0.014 - 0.375 \pm 0.014$ $0.354 \pm 0.011 - 0.685 \pm 0.011$	Gly-Leu	188.23	$// - 0.563 \pm 0.014$	// - 0.543 ± 0.011	$// - 0.520 \pm 0.014$				
Val-Thr218.30 $0.995 \pm 0.021 - 0.924 \pm 0.020$ $0.948 \pm 0.024 - 0.882 \pm 0.018$ $0.902 \pm 0.018 - 0.838 \pm 0.018$ Thr-Leu232.30 $0.892 \pm 0.019 - 0.405 \pm 0.015$ $0.854 \pm 0.018 - 0.388 \pm 0.016$ $0.808 \pm 0.018 - 0.368 \pm 0.011$ Ala-Phe236.30 $0.300 \pm 0.010 - 0.448 \pm 0.015$ $0.285 \pm 0.012 - 0.427 \pm 0.010$ $0.269 \pm 0.010 - 0.402 \pm 0.011$ Phe-Ala236.30 $0.478 \pm 0.014 - 0.318 \pm 0.010$ $0.456 \pm 0.016 - 0.302 \pm 0.011$ $0.433 \pm 0.011 - 0.284 \pm 0.008$ Val-Met248.30 $0.822 \pm 0.019 - 0.445 \pm 0.011$ $0.778 \pm 0.017 - 0.422 \pm 0.012$ $0.731 \pm 0.015 - 0.398 \pm 0.011$ Tyr-Ala252.30 $0.441 \pm 0.022 - 0.291 \pm 0.018$ $0.418 \pm 0.017 - 0.276 \pm 0.013$ $0.394 \pm 0.014 - 0.350 \pm 0.011$ Met-Leu262.40 $0.389 \pm 0.013 - 0.396 \pm 0.011$ $0.368 \pm 0.014 - 0.375 \pm 0.014$ $0.344 \pm 0.014 - 0.350 \pm 0.011$ Phe-Val264.30 $0.400 \pm 0.012 - 0.772 \pm 0.018$ $0.380 \pm 0.010 - 0.729 \pm 0.016$ $0.354 \pm 0.011 - 0.685 \pm 0.016$	Val–Ser	204.20	$1.179 \pm 0.028 - 0.591 \pm 0.015$	$1.131 \pm 0.028 - 0.566 \pm 0.014$	$1.076 \pm 0.025 - 0.540 \pm 0.014$				
Thr-Leu232.30 $0.892 \pm 0.019 - 0.405 \pm 0.015$ $0.854 \pm 0.018 - 0.388 \pm 0.016$ $0.808 \pm 0.018 - 0.368 \pm 0.011$ Ala-Phe236.30 $0.300 \pm 0.010 - 0.448 \pm 0.015$ $0.285 \pm 0.012 - 0.427 \pm 0.010$ $0.269 \pm 0.010 - 0.402 \pm 0.011$ Phe-Ala236.30 $0.478 \pm 0.014 - 0.318 \pm 0.010$ $0.456 \pm 0.016 - 0.302 \pm 0.011$ $0.433 \pm 0.011 - 0.284 \pm 0.008$ Val-Met248.30 $0.822 \pm 0.019 - 0.445 \pm 0.011$ $0.778 \pm 0.017 - 0.422 \pm 0.012$ $0.731 \pm 0.015 - 0.398 \pm 0.011$ Tyr-Ala252.30 $0.441 \pm 0.022 - 0.291 \pm 0.018$ $0.418 \pm 0.017 - 0.276 \pm 0.013$ $0.394 \pm 0.012 - 0.260 \pm 0.011$ Met-Leu262.40 $0.389 \pm 0.013 - 0.396 \pm 0.011$ $0.368 \pm 0.014 - 0.375 \pm 0.014$ $0.344 \pm 0.014 - 0.350 \pm 0.011$ Phe-Val264.30 $0.400 \pm 0.012 - 0.772 \pm 0.018$ $0.380 \pm 0.010 - 0.729 \pm 0.016$ $0.354 \pm 0.011 - 0.685 \pm 0.016$	Val-Thr	218.30	$0.995 \pm 0.021 - 0.924 \pm 0.020$	$0.948 \pm 0.024 - 0.882 \pm 0.018$	$0.902 \pm 0.018 - 0.838 \pm 0.018$				
Ala-Phe236.30 $0.300 \pm 0.010 - 0.448 \pm 0.015$ $0.285 \pm 0.012 - 0.427 \pm 0.010$ $0.269 \pm 0.010 - 0.402 \pm 0.011$ Phe-Ala236.30 $0.478 \pm 0.014 - 0.318 \pm 0.010$ $0.456 \pm 0.016 - 0.302 \pm 0.011$ $0.433 \pm 0.011 - 0.284 \pm 0.008$ Val-Met248.30 $0.822 \pm 0.019 - 0.445 \pm 0.011$ $0.778 \pm 0.017 - 0.422 \pm 0.012$ $0.731 \pm 0.015 - 0.398 \pm 0.011$ Tyr-Ala252.30 $0.441 \pm 0.022 - 0.291 \pm 0.018$ $0.418 \pm 0.017 - 0.276 \pm 0.013$ $0.394 \pm 0.012 - 0.260 \pm 0.011$ Met-Leu262.40 $0.389 \pm 0.013 - 0.396 \pm 0.011$ $0.368 \pm 0.014 - 0.375 \pm 0.014$ $0.344 \pm 0.014 - 0.350 \pm 0.011$ Phe-Val264.30 $0.400 \pm 0.012 - 0.772 \pm 0.018$ $0.380 \pm 0.010 - 0.729 \pm 0.016$ $0.354 \pm 0.011 - 0.685 \pm 0.016$	Thr-Leu	232.30	$0.892 \pm 0.019 - 0.405 \pm 0.015$	$0.854 \pm 0.018 - 0.388 \pm 0.016$	$0.808 \pm 0.018 - 0.368 \pm 0.011$				
Phe-Ala236.30 $0.478 \pm 0.014 - 0.318 \pm 0.010$ $0.456 \pm 0.016 - 0.302 \pm 0.011$ $0.433 \pm 0.011 - 0.284 \pm 0.008$ Val-Met248.30 $0.822 \pm 0.019 - 0.445 \pm 0.011$ $0.778 \pm 0.017 - 0.422 \pm 0.012$ $0.731 \pm 0.015 - 0.398 \pm 0.011$ Tyr-Ala252.30 $0.441 \pm 0.022 - 0.291 \pm 0.018$ $0.418 \pm 0.017 - 0.276 \pm 0.013$ $0.394 \pm 0.012 - 0.260 \pm 0.011$ Met-Leu262.40 $0.389 \pm 0.013 - 0.396 \pm 0.011$ $0.368 \pm 0.014 - 0.375 \pm 0.014$ $0.344 \pm 0.014 - 0.350 \pm 0.011$ Phe-Val264.30 $0.400 \pm 0.012 - 0.772 \pm 0.018$ $0.380 \pm 0.010 - 0.729 \pm 0.016$ $0.354 \pm 0.011 - 0.685 \pm 0.016$	Ala-Phe	236.30	$0.300 \pm 0.010 - 0.448 \pm 0.015$	$0.285 \pm 0.012 - 0.427 \pm 0.010$	$0.269 \pm 0.010 - 0.402 \pm 0.011$				
Val-Met 248.30 $0.822 \pm 0.019 - 0.445 \pm 0.011$ $0.778 \pm 0.017 - 0.422 \pm 0.012$ $0.731 \pm 0.015 - 0.398 \pm 0.011$ Tyr-Ala 252.30 $0.441 \pm 0.022 - 0.291 \pm 0.018$ $0.418 \pm 0.017 - 0.276 \pm 0.013$ $0.394 \pm 0.012 - 0.260 \pm 0.011$ Met-Leu 262.40 $0.389 \pm 0.013 - 0.396 \pm 0.011$ $0.368 \pm 0.014 - 0.375 \pm 0.014$ $0.344 \pm 0.014 - 0.350 \pm 0.011$ Phe-Val 264.30 $0.400 \pm 0.012 - 0.772 \pm 0.018$ $0.380 \pm 0.010 - 0.729 \pm 0.016$ $0.354 \pm 0.011 - 0.685 \pm 0.016$	Phe-Ala	236.30	$0.478 \pm 0.014 - 0.318 \pm 0.010$	$0.456 \pm 0.016 - 0.302 \pm 0.011$	$0.433 \pm 0.011 - 0.284 \pm 0.008$				
Tyr-Ala 252.30 $0.441 \pm 0.022 - 0.291 \pm 0.018$ $0.418 \pm 0.017 - 0.276 \pm 0.013$ $0.394 \pm 0.012 - 0.260 \pm 0.011$ Met-Leu 262.40 $0.389 \pm 0.013 - 0.396 \pm 0.011$ $0.368 \pm 0.014 - 0.375 \pm 0.014$ $0.344 \pm 0.014 - 0.350 \pm 0.011$ Phe-Val 264.30 $0.400 \pm 0.012 - 0.772 \pm 0.018$ $0.380 \pm 0.010 - 0.729 \pm 0.016$ $0.354 \pm 0.011 - 0.685 \pm 0.016$	Val-Met	248.30	$0.822 \pm 0.019 - 0.445 \pm 0.011$	$0.778 \pm 0.017 - 0.422 \pm 0.012$	$0.731 \pm 0.015 - 0.398 \pm 0.011$				
Met-Leu 262.40 $0.389 \pm 0.013 - 0.396 \pm 0.011$ $0.368 \pm 0.014 - 0.375 \pm 0.014$ $0.344 \pm 0.014 - 0.350 \pm 0.011$ Phe-Val 264.30 $0.400 \pm 0.012 - 0.772 \pm 0.018$ $0.380 \pm 0.010 - 0.729 \pm 0.016$ $0.354 \pm 0.011 - 0.685 \pm 0.016$	Tyr–Ala	252.30	$0.441 \pm 0.022 - 0.291 \pm 0.018$	$0.418 \pm 0.017 - 0.276 \pm 0.013$	$0.394 \pm 0.012 - 0.260 \pm 0.011$				
Phe-Val264.30 $0.400 \pm 0.012 - 0.772 \pm 0.018$ $0.380 \pm 0.010 - 0.729 \pm 0.016$ $0.354 \pm 0.011 - 0.685 \pm 0.016$	Met-Leu	262.40	$0.389 \pm 0.013 - 0.396 \pm 0.011$	$0.368 \pm 0.014 - 0.375 \pm 0.014$	$0.344 \pm 0.014 - 0.350 \pm 0.011$				
	Phe-Val	264.30	$0.400 \pm 0.012 - 0.772 \pm 0.018$	$0.380 \pm 0.010 - 0.729 \pm 0.016$	$0.354 \pm 0.011 - 0.685 \pm 0.016$				

Table S2. The ¹³C_{β} nuclei measured T_1 values (at 298 K) of each dipeptide at three magnetic fields (± indicates the StdDev with n = 20).

 $^{\alpha}$ M_w is the molecular weight of dipeptides' zwitterionic form.

Comparison between relaxation rates for $^{13}C_{\alpha}$ and $^{13}C_{\beta}$ nuclei

The relaxation rate of ¹³C nucleus is equal to $1/(NT_1)$, where N is the number of the attached protons to the carbon. The following Tables S3-S5 describe the corresponding relaxation rates of $^{13}C_{\alpha}$ and $^{13}C_{\beta}$ nuclei and their differences $\left(1/(NT_1)_{1_3}C_a} - 1/(NT_1)_{1_3}C_{\beta}\right)$ for each studied dipeptide's component at three magnetic

fields:

Table S3 . The ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ nuclei measured relaxation rates	$\left[1/(NT_1)\right]$ values (at 298 K) of each dipeptide
at 500 MHz (\pm indicates the StdDev with n = 20).	

		pH = 6.0					
Dipeptides		500 MHz					
$(-\mathrm{NH}_2 \rightarrow -\mathrm{COOH})$	M_W^{u}	$1/(NT_1)$ (s ⁻¹) for ¹³ C _a	$1/(\mathrm{N}T_1)$ (s ⁻¹) for $^{13}\mathrm{C}_{\mathrm{\beta}}$	$1/(NT_1)_{{}^{13}C_a} - 1/(NT_1)_{{}^{13}C_a}^{b}$			
				(s ⁻¹)			
Ala–Gly	146.14	$0.584 \pm 0.012 - 0.591 \pm 0.008$	$0.590 \pm 0.008 - //$	-0.006 - //			
Gly–Ala	146.14	$0.600 \pm 0.015 - 0.591 \pm 0.013$	$//-0.596\pm 0.007$	//0.005			
Ala–Ala	160.17	$0.775 \pm 0.012 - 0.774 \pm 0.013$	$0.780 \pm 0.012 - 0.779 \pm 0.020$	-0.0050.005			
Gly-Ser	162.14	$0.678 \pm 0.013 - 0.690 \pm 0.012$	$//-0.686\pm0.015$	// - 0.004			
Gly-Leu	188.23	$0.858 \pm 0.015 - 0.869 \pm 0.023$	$// - 0.888 \pm 0.022$	//0.019			
Val–Ser	204.20	$0.843 \pm 0.019 - 0.900 \pm 0.024$	$0.848 \pm 0.020 - 0.846 \pm 0.021$	-0.005 - 0.054			
Val-Thr	218.30	$0.992 \pm 0.028 - 1.130 \pm 0.026$	$1.005 \pm 0.021 - 1.082 \pm 0.023$	-0.013 - 0.048			
Thr-Leu	232.30	$1.124 \pm 0.029 - 1.214 \pm 0.036$	$1.121 \pm 0.023 - 1.235 \pm 0.045$	0.0030.021			
Ala–Phe	236.30	$1.101 \pm 0.031 - 1.103 \pm 0.029$	$1.111 \pm 0.032 - 1.116 \pm 0.036$	-0.0100.013			
Phe-Ala	236.30	$1.045 \pm 0.032 - 1.035 \pm 0.036$	$1.046 \pm 0.030 - 1.048 \pm 0.032$	-0.0010.013			
Val-Met	248.30	$1.209 \pm 0.034 - 1.105 \pm 0.039$	$1.217 \pm 0.028 - 1.124 \pm 0.028$	-0.0080.019			
Tyr–Ala	252.30	$1.121 \pm 0.038 - 1.133 \pm 0.035$	$1.134 \pm 0.054 - 1.145 \pm 0.066$	-0.0130.012			
Met-Leu	262.40	$1.271 \pm 0.024 - 1.245 \pm 0.034$	$1.285 \pm 0.040 - 1.263 \pm 0.034$	-0.0140.018			
Phe-Val	264.30	$1.224 \pm 0.030 - 1.289 \pm 0.030$	$1.250 \pm 0.036 - 1.295 \pm 0.029$	-0.0260.006			
α M is the mole	oular wa	aight of dipentides' zwitteri	onic form $\frac{b}{1}/(NT) = \frac{-1}{NT}$				

is the molecular weight of dipeptides' zwitterionic form. ${}^{o} 1/(NT_{1})_{{}^{13}C_{a}} - 1/(NT_{1})_{{}^{13}C_{\beta}}$ values correspond to each dipeptide's component.

Table S4. The ¹³C_{α} and ¹³C_{β} nuclei measured relaxation rates $\left[1/(NT_1)\right]$ values (at 298 K) of each dipeptide at 400 MHz (± indicates the StdDev with n = 20).

		pH = 6.0					
Dipeptides			400 MHz				
$(-NH_2 \rightarrow -COOH)$	M_W	$1/(NT_1)$ (s ⁻¹) for ¹³ C _a	$1/(\mathrm{N}T_1)$ (s ⁻¹) for $^{13}\mathrm{C}_{\mathrm{\beta}}$	$1/(NT_1)_{1_{3_{C_a}}} - 1/(NT_1)_{1_{3_{C_{\beta}}}}^{b}$			
				(s ⁻¹)			
Ala–Gly	146.14	$0.602 \pm 0.011 - 0.611 \pm 0.011$	$0.608 \pm 0.011 - //$	-0.006 - //			
Gly–Ala	146.14	$0.607 \pm 0.013 - 0.616 \pm 0.014$	$//-0.618\pm0.014$	//0.002			
Ala–Ala	160.17	$0.802 \pm 0.016 - 0.800 \pm 0.011$	$0.809 \pm 0.021 - 0.807 \pm 0.023$	-0.0070.007			
Gly-Ser	162.14	$0.702 \pm 0.012 - 0.715 \pm 0.016$	$// - 0.710 \pm 0.015$	// - 0.005			
Gly-Leu	188.23	$0.894 \pm 0.012 - 0.902 \pm 0.024$	$// - 0.921 \pm 0.018$	//0.019			
Val–Ser	204.20	$0.879 \ \pm 0.024 - 0.931 \pm 0.022$	$0.884 \pm 0.021 - 0.883 \pm 0.021$	-0.005 - 0.048			
Val–Thr	218.30	$1.036 \pm 0.025 - 1.183 \pm 0.024$	$1.055 \pm 0.026 - 1.134 \pm 0.023$	-0.019 - 0.049			
Thr-Leu	232.30	$1.183 \pm 0.024 - 1.277 \pm 0.026$	$1.171 \pm 0.024 - 1.289 \pm 0.049$	0.0120.012			
Ala–Phe	236.30	$1.159 \pm 0.029 - 1.163 \pm 0.027$	$1.170 \pm 0.048 - 1.171 \pm 0.027$	-0.0110.008			
Phe-Ala	236.30	$1.091 \pm 0.031 - 1.088 \pm 0.024$	$1.096 \pm 0.037 - 1.104 \pm 0.039$	-0.0050.024			
Val-Met	248.30	$1.276 \pm 0.032 - 1.168 \pm 0.021$	$1.285 \pm 0.026 - 1.152 \pm 0.033$	-0.009 - 0.016			
Tyr–Ala	252.30	$1.183 \pm 0.028 - 1.175 \pm 0.024$	$1.196 \pm 0.047 - 1.208 \pm 0.055$	-0.0130.033			
Met-Leu	262.40	$1.348 \pm 0.030 - 1.316 \pm 0.024$	$1.359 \pm 0.050 - 1.333 \pm 0.048$	-0.0110.017			
Phe-Val	264.30	$1.290 \pm 0.032 - 1.364 \pm 0.033$	$1.316 \pm 0.034 - 1.372 \pm 0.030$	-0.0260.008			

^{*a*} M_W is the molecular weight of dipeptides' zwitterionic form. ^{*b*} $1/(NT_1)_{1_3}C_a - 1/(NT_1)_{1_3}C_{\beta}$ values correspond to each dipeptide's component.

S10

Table S5. The ¹³C_{α} and ¹³C_{β} nuclei measured relaxation rates $\left[1/(NT_1)\right]$ values (at 298 K) of each dipeptide at 250 MHz (± indicates the StdDev with n = 20).

			pH = 6.0		
Dipeptides			250 MHz		
$(-\mathrm{NH}_2 \rightarrow -\mathrm{COOH})$	M _W "	$1/(NT_1)$ (s ⁻¹) for ¹³ C _a	$1/(NT_1)$ (s ⁻¹) for ${}^{13}C_{\beta}$	$1/(NT_1)_{1_3} - 1/(NT_1)_{1_3} b$	
				(s ⁻¹)	
Ala–Gly	146.14	$0.625 \pm 0.012 - 0.634 \pm 0.010$	$0.633 \pm 0.012 - //$	-0.008 - //	
Gly–Ala	146.14	$0.644 \pm 0.010 - 0.639 \pm 0.009$	$// - 0.641 \pm 0.011$	//0.002	
Ala–Ala	160.17	$0.835 \pm 0.018 - 0.832 \pm 0.017$	$0.842 \pm 0.035 - 0.838 \pm 0.021$	-0.0070.006	
Gly-Ser	162.14	$0.728 \pm 0.017 - 0.742 \pm 0.017$	$//-0.737\pm0.013$	// - 0.005	
Gly-Leu	188.23	$0.933 \pm 0.017 - 0.966 \pm 0.023$	$// - 0.962 \pm 0.026$	// - 0.004	
Val–Ser	204.20	$0.917 \pm 0.023 - 0.976 \pm 0.025$	$0.929 \pm 0.021 - 0.926 \pm 0.023$	-0.012 - 0.050	
Val–Thr	218.30	$1.098 \pm 0.033 - 1.245 \pm 0.027$	$1.109 \pm 0.022 - 1.193 \pm 0.025$	-0.011 - 0.052	
Thr-Leu	232.30	$1.248 \pm 0.031 - 1.346 \pm 0.032$	$1.238 \pm 0.027 - 1.359 \pm 0.041$	0.0100.013	
Ala-Phe	236.30	$1.227 \pm 0.029 - 1.227 \pm 0.024$	$1.239 \pm 0.044 - 1.244 \pm 0.033$	-0.0120.017	
Phe-Ala	236.30	$1.160 \pm 0.024 - 1.151 \pm 0.018$	$1.155 \pm 0.029 - 1.174 \pm 0.032$	0.0050.023	
Val–Met	248.30	$1.355 \pm 0.030 - 1.236 \pm 0.028$	$1.368 \pm 0.028 - 1.256 \pm 0.033$	-0.0130.020	
Tyr–Ala	252.30	$1.258 \pm 0.029 - 1.276 \pm 0.018$	$1.269 \pm 0.037 - 1.230 \pm 0.052$	-0.011 - 0.046	
Met-Leu	262.40	$1.433 \pm 0.029 - 1.404 \pm 0.030$	$1.453 \pm 0.056 - 1.429 \pm 0.044$	-0.0100.025	
Phe-Val	264.30	$1.381 \pm 0.039 - 1.456 \pm 0.036$	$1.412 \pm 0.042 - 1.460 \pm 0.033$	-0.0310.004	
^a M_w is the molecular weight of dipeptides' zwitterionic form. ^b $1/(NT_1)_{1,2} - 1/(NT_1)_{1,2}$ values					

^{*a*} M_W is the molecular weight of dipeptides' zwitterionic form. ^{*b*} $1/(NT_1)_{{}^{13}C_a} - 1/(NT_1)_{{}^{13}C_{\beta}}$ value correspond to each dipeptide's component.

Obviously, ¹³C relaxation rates depend on the magnetic field [eqn (1)], however their differences, namely in our case $1/(NT_1)_{{}^{13}C_a} - 1/(NT_1)_{{}^{13}C_\beta}$, for the three magnetic fields, are independent of the magnetic field. Therefore, as indicated in Fig. S1 (see below), almost all $1/(NT_1)_{{}^{13}C_a} - 1/(NT_1)_{{}^{13}C_\beta}$ values lie between the $[2 \times (\text{StdDev})] = 0.042$ around their mean value,⁵ demonstrating $1/(NT_1)$ values coincidence for both ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ nuclei.

Fig. S1. Comparison between ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ nuclei relaxation rates. Since, the $1/(NT_1)_{13}_{C_{\alpha}} - 1/(NT_1)_{13}_{C_{\beta}}$ values for the three magnetic fields are independent of the magnetic field, they are plotted vs. dipeptides' M_W. Almost all values (except of 7, n = 72) lie between the calculated $\pm (2 \times \text{StdDev})$ around their mean value $\left(\overline{1/(NT_1)_{13}_{C_{\alpha}}} - 1/(NT_1)_{13}_{C_{\beta}}} = -0.004 \, s^{-1}\right)$. Obviously, $1/(NT_1)_{13}_{C_{\alpha}}$ and $1/(NT_1)_{13}_{C_{\beta}}$ values coincide.

Dipeptides' correlation times $(\tau_{\rm c})$ from $^{13}C_{\alpha}$ and $^{13}C_{\beta}$ relaxation data

Dipeptides	Να	$^{13}C_{\alpha}$	$^{13}C_{\beta}$
$(-NH_2 \rightarrow -COOH)$	M_{W}	$\tau_{C}^{b}(s)$	$\tau_{c}^{b}(s)$
Ala-Gly	146.14	1.006 ± 0.038	0.990 ± 0.071
Ala-Gly	146.14	1.010 ± 0.010	1.021 ± 0.038
Ala-Gly	146.14	1.013 ± 0.021	1.046 ± 0.031
Ala-Gly	146.14	1.025 ± 0.071	-
Ala-Gly	146.14	1.033 ± 0.018	-
Ala-Gly	146.14	1.039 ± 0.025	-
Gly-Ala	146.14	1.029 ± 0.088	_
Gly-Ala	146.14	1.042 ± 0.068	_
Gly-Ala	146.14	1.057 ± 0.057	_
Gly-Ala	146.14	1.006 ± 0.070	1.026 ± 0.036
Gly-Ala	146.14	1.037 ± 0.051	1.043 ± 0.038
Gly- Ala	146.14	1.074 ± 0.040	1.065 ± 0.134
Ala-Ala	160.17	1.047 ± 0.043	1.054 ± 0.008
Ala-Ala	160.17	1.063 ± 0.055	1.068 ± 0.013
Ala-Ala	160.17	1.066 ± 0.082	1.086 ± 0.174
Ala- Ala	160.17	1.037 ± 0.024	1.015 ± 0.061
Ala- Ala	160.17	1.043 ± 0.038	1.046 ± 0.005
Ala- Ala	160.17	1.061 ± 0.039	1.085 ± 0.046
Gly-Ser	162.14	1.040 ± 0.050	_
Gly-Ser	162.14	1.061 ± 0.049	_
Gly-Ser	162.14	1.088 ± 0.026	_
Gly-Ser	162.14	1.018 ± 0.031	1.025 ± 0.023
Gly-Ser	162.14	1.055 ± 0.044	1.045 ± 0.021
Gly-Ser	162.14	1.100 ± 0.116	1.070 ± 0.026
Gly-Leu	188.23	1.089 ± 0.068	_
Gly-Leu	188.23	1.137 ± 0.017	-
Gly-Leu	188.23	1.198 ± 0.052	_
Gly-Leu	188.23	1.032 ± 0.064	1.093 ± 0.089
Gly-Leu	188.23	1.068 ± 0.042	1.101 ± 0.017
Gly-Leu	188.23	1.096 ± 0.061	1.107 ± 0.056
Val-Ser	204.20	1.065 ± 0.025	1.190 ± 0.009
Val-Ser	204.20	1.118 ± 0.036	1.194 ± 0.010
Val-Ser	204.20	1.185 ± 0.065	1.197 ± 0.012
Val-Ser	204.20	1.052 ± 0.062	1.159 ± 0.011
Val-Ser	204.20	1.110 ± 0.015	1.185 ± 0.004
Val-Ser	204.20	1.154 ± 0.029	1.219 ± 0.014
Val-Thr	218.30	1.226 ± 0.074	1.196 ± 0.076
Val-Thr	218.30	1.268 ± 0.010	1.245 ± 0.006
Val-Thr	218.30	1.300 ± 0.068	1.309 ± 0.073
Val- Thr	218.30	1.213 ± 0.008	1.215 ± 0.019
Val-Thr	218.30	1.238 ± 0.006	1.242 ± 0.010

Table S6. The calculated τ_c values from ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}T_1$ values of each dipeptide by eqn (5).

Val- Thr	218.30	1.272 ± 0.044	1.277 ± 0.023
Thr-Leu	232.30	1.246 ± 0.062	1.224 ± 0.009
Thr-Leu	232.30	1.299 ± 0.006	1.251 ± 0.007
Thr-Leu	232.30	1.370 ± 0.078	1.271 ± 0.025
Thr-Leu	232.30	1.232 ± 0.052	1.213 ± 0.053
Thr-Leu	232.30	1.285 ± 0.046	1.227 ± 0.058
Thr-Leu	232.30	1.355 ± 0.142	1.238 ± 0.142
Ala-Phe	236.30	1.295 ± 0.013	1.302 ± 0.055
Ala-Phe	236.30	1.319 ± 0.039	1.327 ± 0.024
Ala-Phe	236.30	1.352 ± 0.063	1.360 ± 0.154
Ala- Phe	236.30	1.249 ± 0.047	1.303 ± 0.179
Ala- Phe	236.30	1.311 ± 0.047	1.321 ± 0.043
Ala- Phe	236.30	1.393 ± 0.055	1.335 ± 0.095
Phe-Ala	236.30	1.210 ± 0.023	1.223 ± 0.011
Phe-Ala	236.30	1.278 ± 0.055	1.251 ± 0.027
Phe-Ala	236.30	1.293 ± 0.071	1.287 ± 0.095
Phe-Ala	236.30	1.303 ± 0.029	1.349 ± 0.101
Phe-Ala	236.30	1.335 ± 0.228	1.356 ± 0.028
Phe-Ala	236.30	1.354 ± 0.014	1.365 ± 0.083
Val-Met	248.30	1.337 ± 0.031	1.360 ± 0.020
Val-Met	248.30	1.362 ± 0.048	1.387 ± 0.016
Val-Met	248.30	1.397 ± 0.067	1.424 ± 0.040
Val-Met	248.30	1.285 ± 0.060	1.312 ± 0.010
Val-Met	248.30	1.333 ± 0.136	1.345 ± 0.019
Val-Met	248.30	1.396 ± 0.046	1.390 ± 0.074
Tyr -Ala	252.30	1.343 ± 0.013	1.319 ± 0.130
Tyr -Ala	252.30	1.371 ± 0.077	1.353 ± 0.140
Tyr -Ala	252.30	1.409 ± 0.171	1.399 ± 0.164
Tyr-Ala	252.30	1.354 ± 0.085	1.327 ± 0.065
Tyr-Ala	252.30	1.399 ± 0.125	1.353 ± 0.014
Tyr- Ala	252.30	1.460 ± 0.020	1.388 ± 0.181
Met-Leu	262.40	1.345 ± 0.035	1.424 ± 0.038
Met-Leu	262.40	1.407 ± 0.010	1.428 ± 0.052
Met-Leu	262.40	1.491 ± 0.072	1.433 ± 0.081
Met-Leu	262.40	1.397 ± 0.042	1.415 ± 0.165
Met-Leu	262.40	1.409 ± 0.046	1.432 ± 0.023
Met-Leu	262.40	1.425 ± 0.178	1.444 ± 0.063
Phe-Val	264.30	1.385 ± 0.014	1.360 ± 0.071
Phe-Val	264.30	1.413 ± 0.010	1.422 ± 0.013
Phe-Val	264.30	1.432 ± 0.030	1.467 ± 0.052
Phe-Val	264.30	1.392 ± 0.012	1.359 ± 0.021
Phe-Val	264.30	1.420 ± 0.015	1.403 ± 0.007
Phe-Val	264.30	1.459 ± 0.022	1.464 ± 0.033

 $^{\alpha}$ M_W is the molecular weight of dipeptides' zwitterionic form. ^{*b*} The correlation times (τ_c) are multiplied by 10¹⁰. They were calculated by eqn (5) for three magnetic fields as follows: 400 MHz / 500 MHz, 250 MHz / 500 MHz and 250 MHz / 400 MHz, corresponding to each dipeptide's component (in bold for each case) $^{13}C_{\alpha}$ and $^{13}C_{\beta}$ nuclei, respectively.

Dipeptides correlation times $(\tau_{\rm c})$ from $^{13}C_{\alpha}$ and $^{13}C_{\beta}$ relaxation data vs. their M_W

1st order data fitting

Table S7. Statistics for a least-squares linear (1st degree polynomial) regression analysis of dipeptides correlation times (τ_c) from ¹³C_a and ¹³C_β T_1 values *vs*. their M_W (*see* Fig. 1).

	α0	α ₁	\mathbf{R}^2	S.S.				
¹³ C _α (Fig. 1a)								
Dipeptides	0 5041 + 0 0273	0.0034 ± 0.0001	0.90	0 0484				
(pH = 6.0)	0.0011 - 0.0270	0.0001 - 0.0001	0.70	0.0101				
$^{13}C_{\beta}$ (Fig. 1b)								
Dipeptides	0.5065 ± 0.0270	0.0034 ± 0.0002	0.92	0.0395				
(pH = 6.0)	0.0000 - 0.0270	0.0002	0.72	0.0070				

2nd order data fitting

Table S8. Statistics for a least-squares nonlinear (2^{nd} degree polynomial) regression analysis of dipeptides correlation times (τ_c) from ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ T_1 values *vs.* their M_W (*see below* Fig. S2).

	α	α ₁	α_2	\mathbf{R}^2	S.S.				
	$^{13}C_{\alpha}$ (Fig. S2a)								
Dipeptides	1 1730 + 0 1553	-0.0035 ± 0.0016	$1.687 \times 10^{-5} + 3.867 \times 10^{-6}$	0.91	0.044				
(pH = 6.0)	1.1750 ± 0.1555	0.0035 ± 0.0010	1.007×10 ± 5.007×10	0.91	0.044				
$^{13}C_{\beta}$ (Fig. S2b)									
Dipeptides	1 0070 + 0 1484	-0.0017 ± 0.0015	$1.229 \times 10^{-5} + 3.588 \times 10^{-6}$	0.93	0.0368				
(pH = 6.0)	1.0070 ± 0.1404	0.0017 ± 0.0015	1.227×10 ± 5.500×10	0.75	0.0500				

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is O The Owner Societies 2013

Fig. S2. Statistics for a least-squares nonlinear regression (2nd degree polynomial) analysis of dipeptides correlation times (τ_c) from ¹³C_a and ¹³C_b T_1 values. (a) The correlation times τ_c derived from ¹³C_a T_1 relaxation data *vs* dipeptides M_w. (b) The correlation times, τ_c , derived from ¹³C_b T_1 relaxation data *vs* dipeptides M_w.

Alanine Dipeptide–Fully optimized structure by DFT

Fig. S3. The fully optimized neutral pH structure of alanine dipeptide in aqueous solution. The unconstraint optimization performed at the X3LYP/cc-pVTZ level of theory using the IEF-PCM model for bulk water and characterized by vibrational analysis at the same level of theory, resulting in the most stable AD structure. Geometrical details and energetics of the above fully optimized structure are reported at the end of ESI.

H-bonds interaction energies (E_{int}) calculation

The H-bond interaction energy is the energy of interaction of all the separated molecules in the solvated complexes and it can be calculated through the following equation:

$$E_{\text{int}} = E_{\text{AB}}(\text{AB}) - \left[E_{\text{A}}(\text{AB}) + E_{\text{B}}(\text{AB})\right], \qquad (S10)$$

where $E_{AB}(AB)$ is the energy of the AD/H₂Os supermolecule, and $E_A(AB)$ and $E_B(AB)$ are the single-point energies of monomers A (energy calculation of the AD structure at the same intermolecular configuration as in the fully optimized supermolecule in the absence of the H-bonded H₂Os cluster counterpart) and B (energy calculation of the H-bonded H₂Os cluster structure at the same intermolecular configuration as in the fully optimized supermolecule in the absence of the H-bonded H₂Os cluster structure at the same intermolecular configuration as in the fully optimized supermolecule in the absence of the AD counterpart), respectively. Namely, comparison between the interaction energies (E_{int}) for the AD/(H₂Os)_n (n = 7-9) supermolecules indicates the most favorably stabilized complex. All energy calculations performed at the X3LYP/cc-PVTZ level of theory and the IEF-PCM model was applied to mimic aqueous solution.

The following Supplementary Table S9 collects the electronic and interaction energies for the hydrated $AD/(H_2Os)_n$ (n = 7-9) and Supplementary Fig. S4 presents their interaction energies evolution.

Table S9. Total energy, E_{tot} , (in Hartree) and interaction energy, E_{int} , (in kcal mol⁻¹) for the hydrated AD/(H₂Os)_n (n = 7-9) supermolecules calculated at X3LYP/cc-PVTZ level of theory, applying the IEF-PCM model for bulk water.

	AD/7 H ₂ Os	AD/8 H ₂ Os	AD/9 H ₂ Os
$-E_{\rm tot}$	1106.225	1182.681	1259.143
$-E_{\rm int}$	55.04	59.28	56.10

Fig. S4. Comparison between E_{int} for the three AD/H₂Os supermolecules. The AD/8 H₂Os supermolecule exhibits the highest interaction energy among the ones studied, implying its extra stabilization and providing further support to our spectroscopic results.

Alanine Dipeptide/10 H₂Os complex

Fig. S5. DFT calculations of alanine dipeptide/10 H₂Os supermolecule. DFT calculations demonstrated that the tenth H₂O (w_{10}) directly interacts either with (a) C_a or (b) CH₃ of AD. Both H-bond lengths vary between 2.6-2.8 Å. Comparison between these H-bond lengths and those of all other bound H₂Os with the polar sides of AD (<1.9 Å) indicates the weakness of the w_{10} H-bonds, as expected from similar studies,^{6,7} implying their insignificant contribution to the AD τ_c values.

Supplementary References

- 1. A. N. Troganis, C. Tsanaktsidis, and I. P. Gerothanassis, *J. Magn. Reson. Ser. B*, 2003, **164**, 294–303.
- 2. P. G. Takis, V. S. Melissas, and A. N. Troganis, *New J. Chem.*, 2012, **36**, 1866–1878.
- A. A. Al-Karaghouli, F. E. Cole, M. S. Lehmann, C. F. Miskell, J. J. Verbist, and T. F. Koetzle, *J. Chem. Phys.*, 1975, 63, 1360–1366.
- 4. G. Lipari and A. Szabo, J. Am. Chem. Soc., 1982, **104**, 4546–4559.
- 5. C. G. Tsiafoulis, V. Exarchou, P. P. Tziova, E. Bairaktari, I. P. Gerothanassis, and A. N. Troganis, *Anal. Bioanal. Chem.*, 2011, **399**, 2285–2294.
- 6. M. P. Bhate, J. C. Woodard, and M. A. Mehta, J. Am. Chem. Soc., 2009, **131**, 9579–9589.
- 7. B. Yogeswari, R. Kanakaraju, S. Boopathi, and P. Kolandaivel, *J. Mol. Graphics Modell.*, 2012, **35**, 11–20.

Geometrical details and energetics of fully optimized $AD/(H_2O)_n$ (*n*=0, 7-9) supermolecules

AD/(H₂O)₀ (Fig. S3)

(Charge = 0) 23 Atoms E = -571.319175 Hartrees

	X	Y	Z
Ν	-3.363505	0.501270	-0.539515
н	-3.223236	1.099927	-1.365991
С	-2.233749	-0.475329	-0.373587
С	-1.039501	0.347815	0.132543
0	-1.257258	1.305006	0.881926
н	-3.393056	1.121809	0.284604
н	-4.273866	0.034174	-0.646646
Ν	0.157781	-0.081908	-0.247650
н	0.252456	-0.880221	-0.874850
С	1.423646	0.463992	0.237745
С	1.777342	1.781061	-0.460973
н	1.004763	2.529077	-0.287003
н	2.723579	2.156035	-0.074378
н	1.877566	1.627849	-1.537039
н	1.326736	0.644551	1.310613
С	2.546695	-0.585860	0.027078
0	2.287479	-1.561270	-0.721414
0	3.624811	-0.345058	0.614735

С	-2.625978	-1.547365	0.636995
н	-1.807873	-2.257129	0.747358
н	-2.833833	-1.104975	1.611957
н	-3.506445	-2.094167	0.297737
Н	-2.037712	-0.907769	-1.357009

AD/(H₂O)₇ (Fig. 4a)

(Charge = 0) 44 Atoms E = -1106.225237 Hartrees

	X	Y	Z
Ν	-3.673901	0.000577	0.178751
н	-3.811490	0.759198	-0.510630
С	-2.379877	-0.707925	-0.046288
С	-1.246826	0.323213	-0.132493
0	-1.376587	1.457456	0.354653
н	-3.683423	0.450929	1.111931
н	-4.457398	-0.674529	0.110743
н	-2.368847	1.710363	2.012404
0	-3.087333	1.394518	2.586378
н	-3.592716	2.176458	2.832510
н	-6.120146	-2.281001	0.701678
0	-5.719616	-1.927333	-0.100112
н	-5.535906	-2.696687	-0.650514
н	-2.716507	2.562320	-0.847700
0	-3.583279	2.443005	-1.262457
н	-3.438754	2.559266	-2.207439
Ν	-0.148386	-0.113853	-0.738600
н	-0.132066	-1.068175	-1.095101
с	1.088796	0.650918	-0.831747
с	1.472550	0.882483	-2.297545
н	0.694997	1.451260	-2.805222

Н	2.406273	1.438455	-2.356381
н	1.603817	-0.066661	-2.818298
Н	0.909026	1.606934	-0.349579
С	2.258696	-0.035354	-0.093259
0	2.225905	-1.277460	0.086959
0	3.201632	0.727039	0.244658
0	4.646675	-2.583728	0.641263
Н	3.784708	-2.145572	0.504867
Н	5.239623	-1.823661	0.760560
0	5.734319	0.031421	1.023822
н	4.822238	0.285166	0.754201
н	5.734553	0.108228	1.983275
0	0.473151	-2.902402	-1.204534
н	0.846640	-3.207000	-2.037409
н	1.205615	-2.449168	-0.730631
0	2.929379	3.466601	0.244993
н	3.168633	3.766024	-0.636868
н	3.037398	2.492541	0.217899
С	-2.140190	-1.720702	1.071575
н	-2.030289	-1.220717	2.033420
н	-2.977487	-2.414635	1.130457
н	-1.238825	-2.292347	0.865391
н	-2.466511	-1.222794	-1.001062

AD/(H₂O)₈ (Fig. 4b)

(Charge = 0) 47 Atoms E = -1182.680546 Hartrees

	X	Y	Z
Ν	3.434416	-0.128901	-0.285361
н	3.756841	0.458711	0.503587
С	2.285391	-0.996160	0.106950
С	1.161818	-0.104155	0.658111
0	1.359312	1.111479	0.833016
н	3.161189	0.506266	-1.063911
н	4.221527	-0.723322	-0.600738
н	2.267143	1.259833	-3.188875
0	2.563242	1.606225	-2.341138
н	1.836212	2.169895	-2.009320
н	5.591027	-2.061822	-2.085229
0	5.526028	-1.843717	-1.148972
н	5.656246	-2.678922	-0.686574
н	2.961728	1.756299	1.839858
0	3.929524	1.700989	1.852084
н	4.161594	1.388118	2.732841
Ν	0.017596	-0.718041	0.927748
н	-0.060622	-1.723531	0.782704
С	-1.174700	-0.035272	1.430844
С	-1.543266	-0.539335	2.828405
н	-0.728345	-0.348775	3.525554

Н	-2.433973	-0.024949	3.187347
н	-1.746455	-1.609745	2.811202
Н	-0.943687	1.023381	1.473640
С	-2.371376	-0.233094	0.472307
0	-2.571893	-1.381849	0.004950
0	-3.091702	0.776380	0.268103
0	-4.893984	-1.883527	-1.508438
н	-4.074266	-1.768043	-0.991794
Н	-5.213348	-0.968897	-1.586611
0	-5.264368	0.938206	-1.377326
н	-4.480971	0.877032	-0.782862
н	-4.918978	1.285200	-2.205898
0	-0.870899	-3.443041	0.373978
н	-1.122363	-4.010713	1.109128
н	-1.616497	-2.812882	0.247598
0	-2.062264	3.368806	0.240887
Н	-1.250559	3.295631	-0.281715
Н	-2.428606	2.464309	0.265865
С	1.866012	-1.854824	-1.083047
Н	1.477172	-1.234666	-1.890280
Н	2.724208	-2.413646	-1.452571
н	1.100512	-2.569896	-0.793990
н	2.634052	-1.633278	0.919731
0	0.637903	3.075571	-0.930931
н	1.032891	3.924239	-0.700662
Н	0.841791	2.475630	-0.185854

AD/(H₂O)₉ (Fig. 4c)

(Charge = 0) 50 Atoms E = -1259.143155 Hartrees

	X	Y	Z
N	3.357274	0.593994	-0.009983
н	3.460086	0.050831	-0.896344
С	1.981153	1.150250	0.122246
С	0.958941	0.028393	-0.064830
0	1.231417	-1.134524	0.283619
н	3.608248	-0.023611	0.793264
н	4.034096	1.381358	-0.025611
н	4.492554	-0.439896	2.934714
0	4.201584	-0.957258	2.165838
н	3.452703	-1.510185	2.480923
н	5.519032	3.071433	0.786766
0	5.104382	2.794691	-0.049018
н	4.773340	3.616997	-0.450799
н	2.939250	-1.643159	-2.297109
0	3.571107	-0.893304	-2.359020
н	3.341084	-0.422364	-3.177055
Ν	-0.200452	0.406058	-0.583218
н	-0.310469	1.381208	-0.867761
С	-1.348435	-0.480680	-0.740622
С	-1.534613	-0.882665	-2.209094
н	-0.651362	-1.410598	-2.566329

н	-2.397392	-1.539558	-2.306784
н	-1.696443	-0.002477	-2.833066
н	-1.151662	-1.372949	-0.152481
С	-2.647083	0.157508	-0.200873
0	-2.726538	1.406775	-0.110643
0	-3.564559	-0.657490	0.075487
0	-5.189716	2.546848	0.701655
Н	-4.320852	2.180504	0.453932
Н	-5.703882	1.740344	0.873136
0	-6.086478	-0.136768	1.047387
Н	-5.191008	-0.326967	0.690285
н	-6.017032	-0.328865	1.995660
0	-0.879165	3.170384	-1.051268
н	-1.095044	3.429446	-1.961628
Н	-1.666329	2.686964	-0.722336
0	-3.010987	-3.362417	0.377545
Н	-3.145674	-3.767294	-0.491534
Н	-3.230266	-2.417982	0.249648
С	1.812802	1.827300	1.481049
н	1.913734	1.106205	2.291894
Н	2.567196	2.603412	1.607263
Н	0.830785	2.291685	1.543914
Н	1.860316	1.885636	-0.676348
0	1.909502	-2.319585	2.723401
н	1.948251	-3.286639	2.635873
н	1.537323	-1.996991	1.883892

0	1.639892	-2.782278	-1.943045
н	1.391555	-2.423620	-1.072964
н	1.869993	-3.714441	-1.793358