Rapid self-healable poly(ethylene glycol) hydrogels formed by selective metal-phosphate interactions

Takeshi Sato,^{ab} Mitsuhiro Ebara,^a Shinji Tanaka,^c Taka-Aki Asoh,^a Akihiko Kikuchi,^{a*} and Takao Aoyagi^{bd*}

Supporting Information

1. Materials

- 2. Scheme S1: Synthesis of 4-arm PEG phos.
- 3. Figure S1: Stability text of 4-arm PEG phos solutions crosslinked by various metal ions.
- 4. Figure S2: Rheological properties of 4-arm PEG-phos with Ga³⁺.
- 5. Figure S3: Schematic illustration of coordination bond between Fe^{3+} and ascorbic acid.
- 6. Figure S4: Competitive assays.
- 7. Figure S5: Effect of H₃PO₄ concentration on gel formation.
- 8. Figure S6: Effect of pH on gel formation.
- 9. Figure S7: Color changes of metal chloride solutions before and after gelation.
- 10. Figure S8: UV-vis Spectra of FeCl₃aq mixed with HCl or H₃PO₄
- 11. Figure S9: UV-vis Spectra of TiCl₃aq mixed with HCl or H₃PO₄
- 12. Figure S10: UV-vis Spectra of VCl₃aq mixed with HCl or H₃PO₄

1. Materials

All ions used in this study, KCl(> 85.0%), YCl₃(99.9%), FeCl₂(99.0~102.0%), VCl₃ (99.%), GaCl₃(99.9%), TiCl₃ aqueous solution(20 w/w%), TiCl₄(99.0%), MnCl₂ (99.0%), PdCl₂(98.0%), GdCl₃(99.9%), PbCl₂(99.5%), NaCl(99.5%), CrCl₃(99.5%), BaCl₂(99.0%), AlCl₃(98.0%), NiCl₂(98.0%), FeCl₃(99.0%), CaCl₂(95.0%), and phosphoryl chloride(99.0%) were purchased from Wako pure chem. co. (Osaka, Japan) and used as received. Diisopropyl amine (98.0%) was also purchased from Wako pure chem. co. (Osaka, Japan) and dehydrated by KOH. Hydroxyl terminated two-arm poly(ethylene glycol) (2-arm PEG, Mn = 6,000) and hydroxyl terminated 4-arm poly(ethylene glycol) (4-arm PEG, Mn = 40,000) were kindly provided by NOF corporation (Tokyo, Japan). 2-arm PEG and 4-arm PEG were purified by precipitation before use. Briefly, the polymers were dissolved in chloroform (15.0 w/v. %) and dripped into *n*-hexane. After decantation, the precipitated polymer was filtered by vacuum filtration using a 5.0 µm pore membrane. The purified PEG was dried in a desiccator for 12 h.

3. Figure S1: Stability test of 4-arm PEG phos solutions (5 w/v%) crosslinked by various metal ions (1 M).

4. Figure S2: Rheological properties of hydrogels. G' (closed) and G'' (open) values of 4-arm PEG-phos with Ga^{3+} in continuous step strain measurement at a constant frequency of 10 Hz at room temperature. Gel was swept from 1% to 50% strain, and then back to 1% strain.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2013

5. Figure S3: Schematic illustration of coordination bond between Fe^{3+} and ascorbic acid.

6. Figure S4: Competitive assays. 4-arm PEG-phos was gelated by Ti^{3+} , Al^{3+} , V^{3+} , Fe^{3+} , Ga^{3+} , and Fe^{3+} . Then, H_3PO_4 (a) and ascorbic acid (b) aqueous solution (1M) was added to the gels.

7. Figure S5: Effect of H_3PO_4 concentrations on hydrogel formation. The concentration of metal chloride (MCl₃) was fixed at 1.8 x 10^{-1} M

MCI₃: H₃OP₄ = 1:0.02

 MCI_3 : $H_3OP_4 = 1$; 0.01

8. Figure S6: Effect of HCl or ascorbic acid sodium salt concentration on hydrogel formation. The concentration of metal chloride (MCl₃) was fixed at 1.8×10^{-1} M

9. Figure S7: Color changes of metal ion solutions before and after mixing with 4 arm PEG-phos. The concentrations of metal chloride solution and 4-arm PEG-phos were 6.0×10^{-2} M and 10 wt%, respectively.

10. Figure S8: Optical observation of FeCl₃ solutions with HCl (a) and H_3PO_4 (b). The concentration of FeCl₃ was fixed at 8.3 x 10^{-3} M.

Fe:HCl 1:0 1:1 1:2 1:3 1:4 1:5 FeCl3=8.3x 10⁻³M

Fe: phosphoric acid 1:0 1:1 1:2 1:3 1:4 1:5

FeCl3=8.3x 10⁻³M

11. Figure S9: Optical observation of TiCl₃ solutions with HCl (a) and H_3PO_4 (b). The concentration of TiCl₃ was fixed at 8.3 x 10^{-3} M.

12. Figure S10: Optical observation of VCl₃ solutions with HCl (a) and H_3PO_4 (b). The concentration of VCl₃ was fixed at 8.3 x 10^{-3} M.