Supporting Information

Porous Li₂FeSiO₄/Carbon Monoliths with Controlled Macropores: Effects of

Pore Properties on Electrode Performance as Cathode of Lithium Ion Batteries

By George Hasegawa, * Mai Sannohe, Yuya Ishihara, Kazuyoshi Kanamori, Kazuki Nakanishi, and

Takeshi Abe

Figure S1 TG-DTA curves of (a) $Fe(NO_3)_3 \cdot 9H_2O$ and (b) Poly(vinylpyrrolidone) (PVP, $M_w = 55,000$) under air atmosphere.

Figure S2 SEM images of the monolithic Li_2FeSiO_4 /carbon composites calcined at different temperatures; (a) H4-P8, (b) H4-P8-600, (c) H4-P8-700, and (d) H4-P8-800.

Figure S3 Nitrogen adsorption-desorption isotherms of the Li_2FeSiO_4 /carbon composites and those of the samples after the removal of carbon by the calcination at 600 °C for 2 h under air atmosphere.

Figure S4 The XRD pattern of the sample calcined at 700 $^{\circ}$ C under N₂ atmosphere (H4-P8-700) followed by heat treatment at 800 $^{\circ}$ C under air atmosphere.

Figure S5 Charge and discharge curves of the electrode prepared from H4-P8-700 at 10 mA g^{-1} .

Figure S6 Discharge capacities of the samples calcined at 700 °C from different precursor gels at different currents.