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Listing of Sequence of Figures with data relating diffusivities to
adsorption thermodynamics.

The structural details, pore landscapes, surface area vs pore size distributions, CBMC and MD
simulation results, along with available experimental data. The data for each material are arranged and

presented in the accompanying Figures in the following order.

Cage-type structures with narrow windows

For cage-type zeolites, the accompanying Figures demonstrate the validity of the QC model to
describe the loading dependence of CHa.

CHA

DDR

ERI

ITQ-29

LTA-Si (all-silica)

LTA-4A

LTA-5A

SOD-Si (all silica)

TSC

ZIF-8: In this case, experimental data on diffusivities obtained from Leipzig using Infra-Red

Microscopy are presented to demonstrate the influence of molecular clustering.

1D meso-porous channels

BTP-COF

1D micro-porous channels
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For 1D microporous channels, the data comparing the loading dependence of diffusivities with the
inverse thermodynamic factor for variety of guest molecules are presented for the following structures.

AFI

MTW

TON

MgMOF-74

ZnMOF-74

NiMOF-74

FeMOF-74

CoMOF-74

MIL-47

MIL-53(Cr)-Ip

1D micro-porous channels with side pockets
For MOR, the accompanying Figures present data comparing the loading dependence of diffusivities
with the inverse thermodynamic factor for variety of guest molecules.

MOR

“Open” structures with large cavities

For each structure listed below, the accompanying Figures present data comparing the loading
dependence of diffusivities with the inverse thermodynamic factor for variety of guest molecules.

FAU-Si

NaY

NaX

CuBTC

IRMOF-1
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MOF-177

Intersecting channels

For each structure listed below, the accompanying Figures present data comparing the loading
dependence of diffusivities with the inverse thermodynamic factor for variety of guest molecules.

BEA

BOG

FER

ISV

MFI

Zn(bdc)dabco
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Cage-type structures with
narrow windows
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CHA landscape

There are 6 cages per unit cell.
The volume of one CHA cage is
316.4 A3, slightly larger than that of
a single cage of DDR (278 A3), but
significantly lower than FAU (786
A3).

Snapshots
showin
of CH,

Snapshots
showing location
of CH,and CO,

Structural information from: C. Baerlocher, L.B.
McCusker, Database of Zeolite Structures,

International Zeolite Association, http://www.iza-
‘ structure.org/databases/
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CHA window and pore dimensions 700

CHA

The window dimensions calculated using the van der
Waals diameter of framework atoms = 2.7 A are
indicated above by the arrows.

600

"o 500 F

E -

This plot of surface area versus pore dimension g 400
is determined using a combination of the g F
DelLaunay triangulation method for pore o 300 }
dimension determination, and the procedure of S E
Diiren for determination of the surface area. E 200 E
? .

100 F

50 55

60 65 70 75 80

Pore dimension / A

CHA
alA 15.075
b /A 23.907
c/A 13.803
Cell volume / A3 4974.574
conversion factor for [molec/uc] to [mol per kg Framework] 0.2312
conversion factor for [molec/uc] to [kmol/m?3] 0.8747
p [kg/m3] 1444 1
MW unit cell [g/mol(framework)] 4326.106
¢, fractional pore volume 0.382
open space / A3/uc 1898.4
Pore volume / cm?3/g 0.264
Surface area /m2/g 758.0
DelLaunay diameter /A 3.77
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C HA CBMC simulations of isotherms, and isosteric heats of adsorption
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C HA MD simulations of unary self-, and M-S diffusivities
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C HA Modeling the loading dependence of CH, diffusivity
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The model used to describe the concentration dependence of B is described in detail in
Krishna, R.; Paschek, D.; Baur, R. Modelling the occupancy dependence of diffusivities in zeolites, Microporous
Mesoporous Mater. 2004, 76, 233-246.
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CHA Transient uptake of methanol — ethanol mixture

St methanol diffusivity:
< i D, /r?=6x10"s"
2 ,
E 4 ) e ——— =S
= L methanol, with 1"ij CHA: 300 K-
.g 3 E / ethanol, with T; methanol(1)/ethanol(2)
@ B / , f, = 10000 Pa; f,= 10000 Pa;
ko] L / — — — methanol, with l“u. = o“u
T 2r ethanol, with T, = &
c r I} L]
o -
g_ L
S 1t~ d
- ethanol diffusivity:
C B,/r?=1x10°s"
OF Lol Lol Lol Lol
0.001 0.01 0.1 1 10

time, t/h

In these simulations, both the M-S diffusivities are
assumed to be independent of loading. The
overshoot in methanol is not, therefore, a result of
the loading dependence of its M-S diffusivity.

The pure component isotherms are dual-Langmuir-Freundlich fits of CBMC simulated pure component isotherms of alcohols in CHA

available in

Krishna, R.; van Baten, J. M. Entropy-based separation of linear chain molecules by exploiting differences in the saturation capacities

in cage-type zeolites, Sep. Purif. Technol. 2011, 76, 325-330.

The overshoot in the methanol uptake is a direct consequence of thermodynamic coupling caused by the off-diagonal elements of

I, T - df;
{ ! 12} where T T/
1—‘21 1—‘21 f; OAQJV

If the thermodynamic coupling is ignored, i.e. we assume

the methanol overshoot disappears.

I =0,; Kronecker delta

r, I,] [t o
L, I,| |01
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CHA Transient uptake of methanol — 1-propanol mixture

7r
B methanol diffusivity:
. 6 , D, /r?=6x10"s" . _ o
2 methanol, with T; In these simulations, both the M-S diffusivities are
2 St 1-propanol, with T; assumed to be independent of loading. The overshoot
> ,F ——— methanol, with T}, = § CHA: 300 K in methanol is not, therefore, a result of the loading
= C . ; ; . . .
S 1-propanol, with I, = & methanol(1)/1-propanol(2) dependence of its M-S diffusivity.
2 3f J f, = 10000 Pa; f,= 2000 Pa;
© r /7
c
g 2 /
£ E /
8 C 7/
Tr -~ 1-propanol diffusivity:
~ D,/r?=1x10°s"
O\ B e e e A i A il Ll
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The pure component isotherms are dual-Langmuir-Freundlich fits of CBMC simulated pure component isotherms of alcohols in CHA

available in
Krishna, R.; van Baten, J. M. Entropy-based separation of linear chain molecules by exploiting differences in the saturation capacities
in cage-type zeolites, Sep. Purif. Technol. 2011, 76, 325-330.

The overshoot in the methanol uptake is a direct consequence of thermodynamic coupling caused by the off-diagonal elements of

I, T - df;
{ ! 12} where T T/
1—‘21 1—‘21 f; OAQJV

If the thermodynamic coupling is ignored, i.e. we assume I,=3,; Kronecker delta [Fn [, _ 1 0
I, T, 0 1

the methanol overshoot disappears.
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CHA Transient uptake of ethanol — 1-propanol mixture

35F
- ethanol diffusivity:
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= F ethanol, wi , . .
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The pure component isotherms are dual-Langmuir-Freundlich fits of CBMC simulated pure component isotherms of alcohols in CHA
available in

Krishna, R.; van Baten, J. M. Entropy-based separation of linear chain molecules by exploiting differences in the saturation capacities
in cage-type zeolites, Sep. Purif. Technol. 2011, 76, 325-330.

The overshoot in the ethanol uptake is a direct consequence of thermodynamic coupling caused by the off-diagonal elements of

I, T - df;
{ ! 12} where T T/
1—‘21 1—‘21 f; OAQJV

If the thermodynamic coupling is ignored, i.e. we assume I,=3,; Kronecker delta [Fn [, _ 1 0
I, T, 0 1

the ethanol overshoot disappears.
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D D R landscape

There are 12 cages per unit cell.

The volume of one DDR cage is

278 A3, significantly smaller than
that of a single cage of FAU (786
A3), or ZIF-8 (1168 A3).

Structural information from: C. Baerlocher, L.B. McCusker, Database of Zeolite Structures, International Zeolite
Association, http://www.iza-structure.org/databases/
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To convert from molecules per unit cell to mol kg-!, multiply by 0.06936.

TheporevolumeisO.1820m3/g.l . DDR Iandscapes
o Al b7 y

-I accessible pgckets : WithOUt bIOCking

"" ,45‘{
\\ ) ¥

In all our simulations the
inaccessible pockets of
DDR were blocked. This
aspect is explained in our
, paper

R. Krishna and J.M. van
Baten, Comment on
Comparative Molecular
Simulation Study of
CO2/N2 and CH4/N2
Separation in Zeolites and
Metal-Organic
Frameworks, Langmuir, 26
(2010) 2975-2978
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DDR w imens!
window and pore dimensions i
250
_ - DDR
This plot of surface area versus pore Nc» 200 }
dimension is determined using a S F
combination of the DeLaunay = L
triangulation method for pore o 150 1
dimension determination, and the g r
procedure of Diren for determination S F
of the surface area. ‘g 100 -
(7 C
50 |
#3##3##3#3####
5.0 55 6.0 6.5 7.0 7.5 8.0
Pore dimension / A
alA 24.006
b /A 13.86
c/A 40.892
DDR Cell volume / A3 13605.72
conversion factor for [molec/uc] to [mol per kg Framework] 0.0693
conversion factor for [molec/uc] to [kmol/m3] 0.4981
The window dimensions calculated using the van | p[kg/m3] 1759.991
der Wa.als diameter of framework atoms = 2.7 A MW unit cell [g/mol(framework)] 14420.35
are indicated above by the arrows. )
¢, fractional pore volume 0.245
open space / A3/uc 3333.5
Pore volume / cmd/g 0.139
Surface area /m2/g 350.0
DelLaunay diameter /A 3.65
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D D R CBMC simulations of isotherms, and isosteric heats of adsorption
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D D R Modeling the loading dependence of CH, diffusivity

Loading, ©,/ molecules per cage

QC isotherm fits:
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o
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z
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Krishna, Paschek and Baur (2004) model
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Gi =y1-46,(1- ;)1 —exp(- w; /RT))
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Thermodynamic correction factor, T

The model used to describe the concentration dependence of b is described in detail in
Krishna, R.; Paschek, D.; Baur, R. Modelling the occupancy dependence of diffusivities in zeolites, Microporous
Mesoporous Mater. 2004, 76, 233-246.
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E RI pore landscape

There are 4 cages per unit cell.

The volume of one ERI cage is 408.7 A3,
significantly smaller than that of a single cage
of FAU-Si (786 A3), or ZIF-8 (1168 A3).

z-direction —

Snapshots
showing location
of CH,and CO,

Structural information from: C. Baerlocher, L.B.
McCusker, Database of Zeolite Structures,
International Zeolite Association, http://www.iza-
structure.org/databases/



ERI window and pore dimensions

The window dimensions calculated using the van
der Waals diameter of framework atoms = 2.7 A
are indicated above by the arrows.
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500 -
400 |-
_ i ERI
. -
This plot of surface area versus pore NE 300 B
dimension is determined using a ~ F
combination of the DeLaunay g L
triangulation method for pore dimension [ F
determination, and the procedure of 8 200 C
Diren for determination of the surface g F
area. a r
100 -
O 7 Ll rrr v rr rrrrrad
50 55 60 65 70 75 80
Pore dimension / A
alA 22.953
b /A 13.252
c/A 14.81
Cell volume / A3 4504.804
conversion factor for [molec/uc] to [mol per kg Framework] 0.2312
conversion factor for [molec/uc] to [kmol/m3] 1.0156
p [kg/m3] 1594.693
MW unit cell [g/mol(framework)] 4326.106
¢, fractional pore volume 0.363
open space / A3/uc 1635.0
Pore volume / cmd/g 0.228
Surface area /m2/g 635.0

DelLaunay diameter /A

3.81
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E RI MD simulations of unary self- diffusivities
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ITQ-29 pore landscape There is 1 cage per unit cell.

The volume of one ITQ-29 cage is
677.6 A3, intermediate in size
between a single cage of ZIF-8
(1168 A3) and of DDR (278 A3).

The structural information for ITQ-29 is not available in the 1IZA
atlas and is taken from Corma, Nature, 437 (2004) 287. The
window size is slightly smaller than that of LTA Si.

Inaccessible

sodalite cages
have been
blocked in
these (@
simulations
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ITQ-29 wi imensi
- window and pore dimensions -
500
- - ITQ-29
_ 2 400
This plot of surface area versus pore = r
dimension is determined using a ~ =
combination of the DeLaunay g 300 |
triangulation method for pore dimension [ L
determination, and the procedure of 8 r
Diren for determination of the surface £ 200 -
area. a E
100 F
O ? IMAIAINMAIAMIALANAINMANANAIMMANALANAI M
9.5 10.0 10.5 11.0 11.5
Pore dimension / A
alA 11.867
b /A 11.867
c/A 11.867
Cell volume / A3 1671.178
conversion factor for [molec/uc] to [mol per kg Framework] 0.6935
conversion factor for [molec/uc] to [kmol/m3] 2.4508
p [kg/m3] 1432.877
MW unit cell [g/mol(framework)] 1442.035
. ) ) . ¢, fractional pore volume 0.405
The window dimension calculated using the van »
der Waals diameter of framework atoms = 2.7 A is open space / A%luc 677.6
indicated above by the arrows. Pore volume / cm3/g 0.283
Surface area /m2/g 773.0
DelLaunay diameter /A 3.98
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ITQ'29 MD simulations of unary self- diffusivities
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ITQ'29 Modeling the loading dependence of CH, diffusivity

12 QC isotherm fits:
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The model used to describe the concentration dependence of b, is described in detail in

Thermodynamic correction factor, T,
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Krishna, R.; Paschek, D.; Baur, R. Modelling the occupancy dependence of diffusivities in zeolites, Microporous

Mesoporous Mater. 2004, 76, 233-246.
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ITQ-29, diffusivity of CH,
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LTA'SI landscapes 1isis 3 hypothetical structure

constructed from dealuminized
LTA-5A structure

There are 8 cages per unit cell.

The volume of one LTA cage is 743
A3, intermediate in size between a
single cage of ZIF-8 (1168 A3) and of
DDR (278 A3).

B Inaccessible
sodalite cages

1 A windows 44 ‘,,/'
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u
u - . 700 C
LTA'Sl window and pore dimensions :
600 -
"o 500 -
This plot of surface area versus pore ~ C
8_r| n dimension is determined using a E C
g combination of the DeLaunay ® 400 -
H d triangulation method for pore dimension % F
WINnaow determination, and the procedure of Q 300 [
Diren for determination of the surface © E
Of LTA area. 5 200 L
» -
100 F
O E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 |
9.5 10.0 10.5 11.0 11.5
Pore dimension / A
LTA-Si
alA 24.61
b /A 24.61
c/A 24.61
Cell volume / A3 14905.1
conversion factor for [molec/uc] to [mol per kg Framework] 0.0867
conversion factor for [molec/uc] to [kmol/m3] 0.2794
p [kg/m3] 1285.248
MW unit cell [g/mol(framework)] 11536.28
] _ _ ) ¢, fractional pore volume 0.399
The window dimension calculated using the van 7o, con4d
der Waals diameter of framework atoms = 2.7 A is open Space / ATue :
indicated above by the arrows. Pore volume / cm?/g 0.310
Surface area /m2/g 896.0
DelLaunay diameter /A 4.10
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LTA'SI CBMC simulations of isotherms, and isosteric heats of adsorption

Component loading, g,/ mol kg

10 -

(o]

| —m— CH,

|- H2

pure components;
LTA-Si; 300 K;
CBMC simulations

—e— CO,

—e— N,

10° 108 107 108

Bulk fluid phase fugacity, £, /Pa

Isosteric heat of adsorption, -Q, / kJ mol™

w
o
1

N
o
T

-
o

pure components;
LTA-Si; 300 K;
CBMC simulations

0.01 0.1

Component loading, g,/ mol kg™

1

Component loading, g,/ mol kg'1

—@— CO,
—m— CH,
—{F— Kr
—#— N,
—e— Ar
# H2
—>— Ne

10°

100

10

1072

pure components;
LTA-Si; 300 K;
CBMC simulations

10 104 105 108 107 108

Bulk fluid phase fugacity, f, /Pa
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LTA'SI Modeling the loading dependence of CH, diffusivity

12

10

Loading, ©,/ molecules per cage
()]

QC isotherm fits:
0. = 12.5/cage;

isat”
z=5

® CBMC
W/RT =1

—— W/RT=07

—— W/RT=0

CH,; 500K; LTA-Si;
CBMC simulations

10° 108 107 108 10°

Bulk fluid phase fugacity, f / Pa

Quasi - Chemical isotherm
: 20-6) Y
sy =0 200
1-6)\¢g +1-26;
9[ =¢; /Cl,sat = qi/qi,mt = ®i/®i,sat
Gi = \/1—4 6;(1-6; )1 - exp(- w; /RT))
+Z (1—6'[)]

ppu—
(1—9,-)[ 2 g

Krishna, Paschek and Baur (2004) model

(6; —1+26;)exp(w; /RT)

P mg@{%] (H 2(1-6))

¢ =/1-46;(1-6,)1 - exp(— w; /RT))

5

The model used to describe the concentration dependence of B is described in detail in
Krishna, R.; Paschek, D.; Baur, R. Modelling the occupancy dependence of diffusivities in zeolites, Microporous
Mesoporous Mater. 2004, 76, 233-246.

Thermodynamic correction factor, T;

Normalized self diffusivity, D, . / D(0)

10

C isotherm fits:
= 12.5/cage;

at™
5

N © O

I %

W/RT = 1
—— W/RT=07
—— W/RT=0

CH,; 500K;
LTA-Si

0 2 4 6 8 10 12

Loading, ©, / molecules per cage

- CH,; 500K;
- LTA-Si; MD;
D(0)=9.8x10"" m* s

®@ MD ®
w/RT = 1 &
— wRrT=07/ &

I
2
By
—
1
o

QC isotherm fits:
0. .= 12.5/cage;

i,sat”

z=5

0 2 4 6 8 10 12

Loading, ©,/ molecules per cage
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LTA-SI, self-diffusivities of various guest
molecules

10"
—— Ne
M —a— N,
WWQW —%— Ar
g —m— CH,

—@— CO,

100

10

Self diffusivity, D, ..,/ 10° m?s™

102 & MD simulations;
F pure components;
i 300 K; LTA-Si

10-3 N T Oy T |
0 10 20 30 40 50

Pore concentration, ¢,/ kmol m™® These data are for rigid frameworks
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LTA-Si, self-diffusivity of CH,

—%— 1800 K

—%— 1600 K

—@— 1400 K

—A— 1200 K LTA-Si
20—y 1000K CH,; MD

—A— 800K
—3— 500 K

These data are for rigid frameworks

self diffusivity, D, .,/ 10° m?s”

Loading, ©,/ molecules per cage

—&— 1800 K
—%— 1600 K
—@— 1400 K
—c— 1200 K
—v— 1000 K

Normalized self diffusivity, D; . / D; (0)

Loading, ©,/ molecules per cage
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LTA-4A

LTA-4A

LTA-4A

alA 24555
b /A 24.555
c/A 24.555
Cell volume / A3 14805.39
conversion factor for [molec/uc] to [mol per kg Framework] 0.0733
conversion factor for [molec/uc] to [kmol/m3] 0.2991
p [kg/m3] (with cations) 1529.55
MW unit cell [g/mol(framework+cations)] 13637.27
¢, fractional pore volume 0.375
open space / A3/uc 5552.0
Pore volume / cm?3/g 0.245
Surface area /m4/g

DeLaunay diameter /A 4.00

The window dimension calculated using the van
der Waals diameter of framework atoms = 2.7 A is
indicated above by the arrow.

Note that the Na* ions partially block the windows
and therefore the diffusivities in LTA-4A are
significantly lower than that for LTA Si. These
cannot be determined from MD.
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LTA-4A

LTA-4A (96 Na+)
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LTA-4A: Transient uptake of C,H,

C,Hg in LTA-4A

L (3 - -
S r @ £ - //
2 T = 2 r s
br—1 L r— L /
08)- i ¢ . & L , ~——— Adsorption cycle, B, =D, T,
o 06 CoHg in LTA-4A; g 06 L / Adsorption cycle, .= D
= °r Garg & Ruthven, 1972 = UOr Y, -== plion cycle, £ = &
§ i g = 3 i y Desorption cycle, B, = D, T

i g i \
g 04l \m g 04l // Desorption cycle, D, = b,
®© - m © -
© r . © r /
c - c L
S L = S L/
S 02 Bm S 02r[/
= 2 ® adsorption cycle @ - Z /s

@ desorption cycle m. / Di/rc2 =2x10"s"
O-O\\\\\\\\\\\\\\\\\\\\ O_o\\\\\\\\\\\\\\\\\\\\\\\\\
0 1 2 3 4 0 1 2 3 4 5
t1/2/ min“z t1/2/ min1/2

The data are re-plotted using the information The continuous solid lines are simulations including the thermodynamic
contained in correction factor, T
Garg, D. R.; Ruthven, D. M. Effect of the These simulations capture the asymmetry in the adsorption and
concentration dependence of diffusivity on zeolitic desorption cycles.
sorption curves, Chem. Eng. Sci. 1972, 27, 417-
423. . The dashed lines are simulations in which I'; = 1.

These simulations anticipate that the adsorption and desorption cycles
are symmetric.

The simulations assume a constant, loading independent M-S diffusivity,
D.. We take B/r,2=0.0002 s*! where r, is the crystal radius.
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LTA-4A: Transient uptake of N, and CH,

25 35 - LTA-4A; 194 K;
i = "~ Py = 10kPa; pyy, = 90 kPa; o
F'g? 2.0 B - 30
Té 3 o expt data N, 1 r
S i t data CH S 25f
> 15F N\ no .a at E E @ exptdataN,
% i \\ ® No with I 2 20F o expt data CH,
_ i ” e) L
E10pd 77T CHa ,W'th i 3 - @ N, with T,
g I ——— Npwith[}= g g 1°F @ CH,, with T,
o E i - C
g 05 B CH4, with l—‘ij aIJ §_ 10 F B ——— N2’ with rij= é;]
O TTL®L  LTA4A 194K; S o CH,, with T= &
C Py = 50.9 kPa: pg,,, = 49.1 kPa; O sk "?/
00 L N T T T Y N Y Y N N MY Y N | C > .
0 25 50 75 100 00 ;{ \’\ I I Y Y I ) Y I N B |
0 25 50 75 100
t1/2 / min1/2

t1/2 / min1/2

The experimental data are re-plotted using the information contained in
Habgood, H. W. The kinetics of molecular sieve action. Sorption of nitrogen-methane mixtures by Linde molecular sieve 4A, Canad.
J. Chem. 1958, 36, 1384-1397.

In these simulations, both the M-S diffusivities are assumed to be independent of loading. The overshoot in N, is not, therefore, a
result of the loading dependence of its M-S diffusivity.

The overshoot in the N, uptake is a direct consequence of thermodynamic coupling caused by the off-diagonal elements of

I,, T, - of
{ H 12} where T _4 9
1—‘21 1—‘21 f; Oﬁbf

This has been demonstrated by
Krishna, R.; Baur, R. Modelling issues in zeolite based separation processes, Sep. Purif. Technol. 2003, 33, 213-254.

I, I 1 0
If the thermodynamic coupling is ignored, i.e. we assume I =9J,; Kronecker delta L_” 1_12} = {0 J
21 21

the N, overshoot disappears.
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LTA-4A: Transient uptake of CH, and C,H,

12 ¢
_ i
2 1.0
) i
g o8|
g : The data are re-plotted using the
8§ 06 information contained in
S = Carlson, N. W.; Dranoff, J. S. Competitive
< 04 adsorption of methane and ethane on 4A
S - zeolite. Fundamentals of Adsorption; Edited
8 02+ o LTAA: by A.l. Liapis, AIChE: New York, 1986.
L ’

r D‘j:‘ Carlson & Dranoff, 1986

OO \D I Y T
0 2 4 6 8 10
t1/2 / min1/2

In these simulations, both the M-S diffusivities are assumed to be independent of loading. The overshoot in CH, is not, therefore, a
result of the loading dependence of its M-S diffusivity.

The overshoot in the CH, uptake is a direct consequence of thermodynamic coupling caused by the off-diagonal elements of

| U - of
{ H 12} where T, _4 Y
le le f, &qj

This has been demonstrated by
Krishna, R. Diffusion of binary mixtures in microporous materials: Overshoot and roll-up phenomena, Int. Commun. Heat Mass
Transf. 2000, 27, 893-902.
r, I, 1 0
If the thermodynamic coupling is ignored, i.e. we assume Lﬁ r }:{O J
21 21

the CH, overshoot disappears.
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LTA'4A VS LTA'5A diffusivities of CO,

10" ¢
1012 ;
£ ol
2 E
= E
7 [ @ LTA-5A m
£ 0L B LTA4A
? -
s L
105 &
E CO, diffusivity;
| Expt data of Yucel and Ruthven, 1980
10—16 | | | | | | | | | | | | | |

20 25 3.0 35 40 45 50 55

(1000 / T) / K

The experimental data are from
Yucel, H.; Ruthven, D.M. Diffusion of CO, in 4A and 5A zeolite crystals. Journal of Colloid and Interface Science 1980, 74, 186-
195.

Note that no MD simulation results are presented for LTA-4A because the diffusivities are too low to be determined
accurately.
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LTA-5A

LTA-5A

The window dimension calculated using the van
der Waals diameter of framework atoms = 2.7 A is
indicated above by the arrow.

LTA-5A

alA 24 .555
b /A 24 .555
c/A 24.555
Cell volume / A3 14805.39
conversion factor for [molec/uc] to [mol per kg Framework] 0.0744
conversion factor for [molec/uc] to [kmol/m?3] 0.2955
p [kg/m3] (with cations) 1508.376
MW unit cell [g/mol(framework+cations)] 13448.48
¢, fractional pore volume 0.380
open space / A3/uc 5620.4
Pore volume / cm?3/g 0.252
Surface area /m2/g

DelLaunay diameter /A 4.00
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LTA-SA

LTA-5A (32 Na+, 32 Ca++)
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LTA'5A Modeling the loading dependence of CH, diffusivity at 300 K

14
- (] CBMC Quasi - Chemical isotherm
12 . ) =
QC isotherm fits: W/RT =1.5 0. 20-6) Y
. =13. . - = b, f, =—2A i
10 Oisa= 13.5/cage: w/RT =1 i/ (1-9i)(g,.+1-29j
z=5 — Ww/RT=0

6 =c; /Ci,sat = qi/qi,sat = ®i/®i,sat
¢ =41-46,(1-6,)1 - exp(- w; /RT))

T, = 1 (H_i(l—Q)J
(1-6;) 2 g

W/RT = -1

/
|
|
|
|
|
|
|
|
/

Loading, ©,/ molecules per cage

CH,; 300K; LTA-5A,;
CBMC simulations

0 Lol Lol L Ll . .
50 - QC isotherm fits:
4 5 6 7 . .
10 10 10 10 S [ CH, 300K; O, .~ 13.5/cage;
. - = r LTA-5A; MD; -
Bulk fluid phase fugacity, f / Pa Q L ) ) z=5
p gacity, f, S sl BO=2210"m?s" P
a I ¢
> + ®
T 30 r
‘D r @ MD
Krishna, Paschek and Baur (2004) model -:E L w/RT=1.5 ®
ho} L
)T . . . e 20| —— W/RT=1 ®
D, =D, (0)[ I+, j (H (61 =1+26) exp(w, /RT)] 5 200 /RT = o
2(1-6)) 2(1-6) 3 [ —— w/RT=0 ’ o
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S r o
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o
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»
oo
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o
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N

Loading, ©,/ molecules per cage

The model used to describe the concentration dependence of B is described in detail in
Krishna, R.; Paschek, D.; Baur, R. Modelling the occupancy dependence of diffusivities in zeolites, Microporous
Mesoporous Mater. 2004, 76, 233-246.
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LTA'5A Modeling the loading dependence of CH, diffusivity at 500 K

W/RT =1.1
_ 10 - — w/RT=0.9
- /’ QC isotherm fits: Lo - — W/RT=0
o 12° / 0,.,= 13.5/cage; s i ——— W/RT=-1
8 C l z=5 E 8
g 10 I c B QC isotherm fits:
Y - ' 2 - = 13.5/cage;
g [ ® CBMC 5 gf O 135/cage
3 8¢ ' W/RT = 1.1 g - z=5
g o : W/RT=0.9 o i
~ [ | w/RT=0 Quasi - Chemical isotherm % 4 " CH,; 500K; !
@ . g FLTA-
5 4f ! ——— WwRT=-1 .6 (20-6)Y 3 [LTA-SA !
g 4 ! b fy =t ' s b /
5 F | Y -6)l g +1-26 % 20 /
3 E . . EA.
| 2 E /CH4’ 500K’ LTASA‘ 9i:Ci/ci,sat:qi/qi,satZGi/Qi,Sat ﬁ : ........................?... Fi=1
r ® CBMC simulations S ~— -
07 Lol il L ;i:\/1_4gi(l_ei)(l_exp(_wi/RT)) 0
105 106 107 108 10° - | ( z(l—g,»)] 0 2 4 6 8 10 12
Bulk fluid phase fugacity, f/ Pa -l 2 g Loading, ©, / molecules per cage
12
S - CH,; 500K; ﬁ
& 4o LTA5A; MD; S e
< - D(0)=35x10"m’s! o \‘°
Krishna, Paschek and Baur (2004) model Q'% N ® PY
_ -1 . 8 r [} e
p. :D(O)[ l+g; J Z[H_ (si _1+291)6XP(W1/RT)]2 E‘ T ® MD @ Q
o 2a-6) 2(1-6) g WRT=1.1 8 ®
2 L
G =y1-46,(1-6,)1—exp(-w; /RT)) 5 [ —— w/RT=09 A
s [ — wrr=0 @
4 |- I
8 |
N L QC isotherm fits:
g 2 O, .= 13.5/cage;
§ z=5

| | T T—

0 2 4 6 8 10 12

Loading, ©,/ molecules per cage
The model used to describe the concentration dependence of B is described in detail in
Krishna, R.; Paschek, D.; Baur, R. Modelling the occupancy dependence of diffusivities in zeolites, Microporous
Mesoporous Mater. 2004, 76, 233-246.
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LTA-5A, diffusivity of CH,
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—#— 1200K LTA5A
—v— 1000 K CH '-MI’D
1.0 —A— 800K )¢ 4
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These data are for rigid frameworks
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Loading, ©,/ molecules per cage
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Loading, ©,/ molecules per cage
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LTA'5A Modeling the MR experiments of Caro

Self diffusivity, D, .,/ 10° m? s

4.0

3.5

3.0

25

2.0

1.5

1.0

0.5

0.0

Caro PFG NMR expt;
LTA-5A; 300 K; CH,
QC model:

0, .~ 12/cage;

z=5;;w/RT=0.8
B(0)= 1x10° m? s

— QC model
B NMR

o

2 4 6 8 10 12

Loading, ©,/ molecules per cage

The experimental data are from
Caro, J.; Bulow, M.; Schirmer, W.; Karger, J.; Heink, W.; Pfeifer, H. Microdynamics of methane, ethane and propane in ZSM-5

type zeolites. Journal of the Chemical Society, Faraday Transactions 1985, 81, 2541-2550.

Self diffusivity, D, ./ 107° m? s™

_ Caro PFG NMR expt;
- LTA-5A; 300 K; C,H,
| QC model:

- O, 7/cage;

z=5; w/RT=0.97
B(0)=6x10"" m* s”

—— QC model
- A NMR

0 1 2 3 4 5 6

Loading, ©;/ molecules per cage

Self diffusivity, D, ./ 107° m? s™

16

14

12

10

Caro PFG NMR expt;
LTA-5A; 300 K; C;H,

rz=5;, w/RT=1.05
-D(0)=1.75x10" m’ 5™

rQC model:
FO. .= 6/cage;

isat”

— QC model
@® NMR

o

1 2 3 4 5

Loading, ©;/ molecules per cage
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SO D 'S | pore landscape

The ZIF-8 structure is analogous to that of SOD.

There are 2 cages per unit cell.

The volume of one SOD cage is
84.8 A3, significantly smaller than
that of ZIF-8 (1168 A3), its structural
analog.

Structural information from: C.
Baerlocher, L.B. McCusker,
Database of Zeolite
Structures, International
Zeolite Association,
http://www.iza-
structure.org/databases/
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SO D'Sl dimensions

SOD-Si

alA 8.89
b /A 8.89
c/A 8.89
Cell volume / A3 702.5954
conversion factor for [molec/uc] to [mol per kg Framework] 1.3869
conversion factor for [molec/uc] to [kmol/m?3] 9.7908
p [kg/m3] 1704.106
MW unit cell [g/mol(framework)] 721.0176
@, fractional pore volume 0.241
open space / A3/uc 169.6
Pore volume / cm?3/g 0.142
Surface area /m4/g

DelLaunay diameter /A 2.47
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TSC landscape

Unit cell
of TSC

Structural information from: C. Baerlocher, L.B. McCusker, Database of Zeolite Structures, International Zeolite Association,
http://www.iza-structure.org/databases/
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A ’
8-ring windows of two

/4 I TSC supercage
sizes:
\ 4.2x4.2 A along [100]
3.1x5.6 A along [110]
‘
”
. LTA cage
‘ of 743 A3

- TSC supercage Front
plane of
unit cell

of TSC

TSC supercage
of 2553 A3
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Surface area / m? g'1

600

500

TSC

400

300

200

100

0

9 10 11 12 13 14 15 16 17

Pore dimension / A

TSC
(supercage - cage)

TSC window and pore dimensions

TSC
(supercage - pocket)

TSC

alA 30.742
b /A 30.742
c/A 30.742
Cell volume / A3 29053.36
conversion factor for [molec/uc]

to [mol per kg Framework] 0.0433
conversion factor for [molec/uc]

to [kmol/m3] 0.1260
p [kg/m3] 1318.729
MW unit cell [g/mol(framework)] 23072.56
¢, fractional pore volume 0.454
open space / A3/uc 13182.6
Pore volume / cm?3/g 0.344
Surface area /m4/g 829.0
DelLaunay diameter /A 4.02

The window dimension calculated using the van der Waals diameter of framework atoms =
2.7 A are indicated above by the arrows. |t is likely that the pockets are inaccessible due to

the narrow constriction of 3.092 A. Another point to note is that the dimensions provided in

the IZA website do not appear to be correct for the window on the left.
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TSC MD simulations of unary self- diffusivities
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Comparing CH, diffusivities In 8-ring zeolites

16 ¢
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Loading, ©,/ molecules per cage
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ZI F'8 pore landscapes —

The ZIF-8 = Zn(methylimidazole), structure was taken

from () 4

R. Banerjee, A. Phan, B. Wang, C. Knobler, H. , ‘

Furukawa, M. O’Keeffe, O.M. Yaghi, High-Throughput ¢’
Synthesis of Zeolitic Imidazolate Frameworks and PN

Application to CO, Capture, Science 319 (2008) 939- o

943. -

The original structural data (cif file) contains solvent -

molecules; these were removed and the solvent-free
structures were simulated.

There are 2 cages per unit cell.

The volume of one ZIF-8 cage is
1168 A3, significantly larger than
that of a single cage of DDR (278
A3), or FAU (786 A3).
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ZI F'8 dimensions

Surface area / m? g'1
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Pore dimension / A

This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Diren for determination of the surface
area.

ZIF-8

alA 16.991
b /A 16.991
c/A 16.991
Cell volume / A3 4905.201
conversion factor for [molec/uc] to [mol per kg Framework] 0.3663
conversion factor for [molec/uc] to [kmol/m3] 0.7106
p [kg/m3] 924.253
MW unit cell [g/mol(framework)] 2730.182
@, fractional pore volume 0.476
open space / A3/uc 2337.0
Pore volume / cm?3/g 0.515
Surface area /m2/g 1164.7
Delaunay diameter /A 3.26
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ZI F'8 methanol, ethanol, and ethane isotherms at 298 K

pure component isotherms; pure component isotherms;
ZIF-8; 298 K; CBMC vs IRM expt 16

20
10

14 —— ethanol

12 —— methanol

10

; 4 ZIF-8; 300 K;

i ~J%— CBMC, ethanol Calculations using % ‘

I ’ - Dual-L ir-Sips fit clustering;
i —~(>~ CBMC, methanol 6 dual-Langmuir- 3 ual-Langmuir-sips Tits 1/T>1

Freundlich fits
% ethanol

<& methanol

A CH,

Lol Lol Lo

N A Y Y B BT 102103 104 105 106 107 0 Yy «
102 103 104 10° 108 107 0 2 4 6 8 10 12
Bulk fluid phase fugacity, £, /Pa
Bulk fluid phase fugacity, f, /Pa Loading, ©,/ molecules per cage

e~ IRM, ethanol
—— IRM, methanol
—A— CBMC, ethane
—/\— |IRM, ethane

0.1

Loading, ©;/ molecules per cage
Loading, ©;/ molecules per cage
oo

Inverse thermodynamic factor, 1/T;

The experimental data are re-plotted using the information in:
C. Chmelik, H. Bux, J. Caro, L. Heinke, F. Hibbe, T. Titze, J. Karger, Mass transfer in a nanoscale material enhanced by
an opposing flux, Phys. Rev. Lett. 104 (2010) 085902.

The steep isotherms for methanol and ethanol are indicative of molecular clustering. This is confirmed by the inverse
thermodynamic factors that significantly exceed unity for a range of molecular loadings. We should therefore expect the
hierarchy of diffusivities to be “abnormal” for methanol, and ethanol.
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ZI F'8 methanol, ethanol, and ethane diffusivities at 298 K

100 ¢ 10 - ) 500 -
B clustering; 1/T'>1 - ~O- Fick D, " & Fick D
B Cm M-SD, clustering; | i
I ’ 101 & M-SD,
@ Self Di self :
r ' 100 |--@ Self Di'se|f

-
o

o

—
—
o

Self, M-S, and Fick diffusivities / 102 m?s™

Self, M-S, and Fick diffusivities / 107'? m?s”
Self, M-S, and Fick diffusivities / 1072 m?s™

- M-S D IRM experiments; IRM experiments; IRM experiments;
b pure methanol; pure ethanol; | pure ethane;
--@ Self Do ZIF-8; 298 K - ZIF-8: 298 K ZIF-8; 298 K
0.1 T T T O B B A A | 0.01 I T T S R A S S A A N B R B A B 1 Y |
0 2 4 6 8 10 12 14 0 2 4 6 8 0 2 4 6 8
Loading, ©, / molecules per cage Loading, ©, / molecules per cage Loading, ©,/ molecules per cage

The experimental data are re-plotted using the information in:
C. Chmelik, H. Bux, J. Caro, L. Heinke, F. Hibbe, T. Titze, J. Karger, Mass transfer in a nanoscale material enhanced by
an opposing flux, Phys. Rev. Lett. 104 (2010) 085902.

The hierarchy of diffusivities is M-S = Self > Fick in regions where molecular clustering occurs.
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ZI F'8 snapshot of methanol clusters

Methanol

clusters
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ZI F'8 snhapshot of ethanol clusters
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1D mesoporous channels
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This
represents
the 1x1x7

simulation
box

BTP 'C O F landscape

The crystallographic structural information for BTP-COF
was obtained from
M. Dogru, A. Sonnauer, A. Gavryushin, P. Knochel, T. Bein,
A Covalent Organic Framework with 4 nm open pores,
Chem. Commun. 47 (2011) 1707-1709.

BTP-
COF
alA 43.65
b /A 75.604
c/A 3.52
Cell volume / A3 11616.4
conversion factor for [molec/uc] to [mol per kg
Framework] 0.3403
conversion factor for [molec/uc] to [kmol/m?3] 0.1900
p [kg/m3] 420.0831
MW unit cell [g/mol(framework)] 2938.67
@, fractional pore volume 0.752
open space / A3/uc 8738.7
Pore volume / cm?3/g 1.791
Surface area /m2/g
DelLaunay diameter /A 34.26
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BTP'CO F CBMC simulations of isotherms, and isosteric heats of adsorption

Pore concentration, c¢. / kmol m3
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The isosteric heats of adsorption
correlate with the Henry coefficients
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BTP'CO F MD simulations of unary self-, and M-S diffusivities
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1D micro-porous channels
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AFI landscapes

12-ring
1D channel of AFI

v

A

e
2%

Snapshots showing location of CH, and CO,

Structural information from: C. Baerlocher, L.B. McCusker, Database of Zeolite Structures, International Zeolite
Association, http://www.iza-structure.org/databases/
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AFI pore dimensions

Surface area / m? g'1
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Pore dimension / A

AFI

alA 23.774
b /A 13.726
c/A 8.484
Cell volume / A3 2768.515
conversion factor for [molec/uc] to [mol per kg Framework] 0.3467
conversion factor for [molec/uc] to [kmol/m3] 2.1866
p [kg/m3] 1729.876
MW unit cell [g/mol(framework)] 2884.07
¢, fractional pore volume 0.274
open space / A3/uc 759.4
Pore volume / cm?3/g 0.159
Surface area /m2/g 466.0
DelLaunay diameter /A 7.26

This plot of surface area versus pore dimension is determined using a
combination of the DeLaunay triangulation method for pore dimension
determination, and the procedure of Diren for determination of the
surface area.
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AFI CBMC simulations of isotherms, and isosteric heats of adsorption
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Influence of Inverse Thermodynamic Factor on diffusivities
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MTW pore landscape

MTW has 1D 12-ring channels

Structural information from: C. Baerlocher, L.B. McCusker,
Database of Zeolite Structures, International Zeolite Association,
http://www.iza-structure.org/databases/
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MTW pore dimensions

This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Diiren for determination of the surface
area.

Surface area / m? g'1

MTW has 1D, 12-ring channels

300
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Pore dimension / A

MTW

alA 24.863

b /A 5.012

c/A 24.326

Cell volume / A3 2887.491

conversion factor for [molec/uc] to [mol per kg Framework] 0.2972

conversion factor for [molec/uc] to [kmol/m3] 2.6759

\ p [kg/m3] 1935.031
5 l MW unit cell [g/mol(framework)] 3364.749
¢, fractional pore volume 0.215

open space / A3/uc 620.6

Pore volume / cm3/g 0.111

Surface area /m?/g 323.0

DelLaunay diameter /A 5.69
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MTW MD simulations of unary self-, and M-S diffusivities
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MTW adsorption of CO,
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TO N pore landscape

10-ring 1D channel of TON

Structural information from: C. Baerlocher, L.B. McCusker, Database of Zeolite Structures, International Zeolite Association,
http://www.iza-structure.org/databases/
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TON pore dimensions

10-ring channel of TON

250
200 TON

‘TO') :

This plot of surface area versus pore NE r

dimension is determined using a - 150 L

combination of the DeLaunay 3 r

triangulation method for pore dimension © L

determination, and the procedure of o 100 -

Diren for determination of the surface g L

area. > r

[} L

50 -
:::::::::: ‘
3 4 6

Pore dimension / A

alA 13.859
b /A 17.42
c/A 5.038
Cell volume / A3 1216.293
conversion factor for [molec/uc] to [mol per kg Framework] 0.6935
conversion factor for [molec/uc] to [kmol/m3] 71763
p [kg/m3] 1968.764
MW unit cell [g/mol(framework)] 1442.035
¢, fractional pore volume 0.190
open space / A3/uc 231.4
Pore volume / cm?3/g 0.097
Surface area /m2/g 253.0
DelLaunay diameter /A 4.88
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M g MOF-74 pore landscapes

The structural information on MgMOF-74 ( = Mg,(dobdc) = Mg\(dobdc = CPO-27-Mg) with dobdc = (dobdc* = 2,5-
dioxido-1,4-benzenedicarboxylate)) were obtained from

A.O. Yazaydin, R.Q. Snurr, T.H. Park, K. Koh, J. Liu, M.D. LeVan, A.l. Benin, P. Jakubczak, M. Lanuza, D.B.
Galloway, J.J. Low, R.R. Willis, Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue
Gas using a Combined Experimental and Modeling Approach, J. Am. Chem. Soc. 131 (2009) 18198-18199.

D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-
organic framework replete with open metal sites, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 20637-20640.

N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, Rod Packings and Metal-Organic Frameworks
Constructed from Rod-Shaped Secondary Building Units, J. Am. Chem. Soc. 127 (2005) 1504-1518.

P.D.C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvag, Hydrogen adsorption in a nickel based coordination
polymer with open metal sites in the cylindrical cavities of the desolvated framework, Chem. Commun. (2006)
959-961.

P.D.C. Dietzel, V. Besikiotis, R. Blom, Application of metal-organic frameworks with coordinatively unsaturated
metal sites in storage and separation of methane and carbon dioxide, J. Mater. Chem. 19 (2009) 7362-7370.

S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a
Coordination Polymer with Cylindrical Pores, J. Am. Chem. Soc. 130 (2008) 10870-10871.

LR <
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Mg MOF-74 pore dimensions

Surface area / m? g'1
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Pore dimension / A

This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Duren for determination of the surface
area.

11.5

MgMOF-74

alA 25.8621
b /A 25.8621
c/A 6.91427
Cell volume / A3 4005.019
conversion factor for [molec/uc] to [mol per kg Framework] 0.4580
conversion factor for [molec/uc] to [kmol/m3] 0.5856
p [kg/m3] 905.367
MW unit cell [g/mol(framework)] 2183.601
¢, fractional pore volume 0.708
open space / A3/uc 2835.6
Pore volume / cm?3/g 0.782
Surface area /m4/g 1640.0
DelLaunay diameter /A 10.66
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M g M O F '74 isotherms and isosteric heats of adsorption from experiments
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The pure component isotherms, with fits, and isosteric heats of adsorption are those reported by:

He, Y.; Krishna, R.; Chen, B. Metal-Organic Frameworks with Potential for Energy-Efficient Adsorptive Separation

of Light Hydrocarbons. Energy Environ. Sci. 2012, 5, 9107-9120.

The unary diffusivities are taken to be identical to those in MgMOF-74; the Maxwell-Stefan diffusivities are the

ones presented by:

Krishna, R.; van Baten, J.M. Investigating the Relative Influences of Molecular Dimensions and Binding Energies
on Diffusivities of Guest Species Inside Nanoporous Crystalline Materials J. Phys. Chem. C 2012, 116, 23556-

23568.
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M g M O F '74 dependence of diffusivity on the isosteric heats of adsorption

0.05rcHa
- C2H6
‘n 0.01 -
- CO2
G C2H4
Q
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L C3H6
MgMOF-74
208 K
0'001 Ll 11 | 11 | 11 | 11 | 11 | 11 |
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Isosteric heat of adsorption, - Q, / kJ mol™

The pure component isotherms, with fits, and isosteric heats of adsorption are those reported by:

He, Y.; Krishna, R.; Chen, B. Metal-Organic Frameworks with Potential for Energy-Efficient Adsorptive Separation
of Light Hydrocarbons. Energy Environ. Sci. 2012, 5, 9107-9120.

The unary diffusivities Maxwell-Stefan diffusivities are the ones presented by:

Krishna, R.; van Baten, J.M. Investigating the Relative Influences of Molecular Dimensions and Binding Energies

on Diffusivities of Guest Species Inside Nanoporous Crystalline Materials J. Phys. Chem. C 2012, 116, 23556-
23568.
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ZnMOF-74 pore landscapes

The structural information on ZnMOF-74 ( = Zn,(dobdc) = Zn\(dobdc= CPO-27-Zn) with dobdc = (dobdc* = 2,5-
dioxido-1,4-benzenedicarboxylate)) were obtained from

A.O. Yazaydin, R.Q. Snurr, T.H. Park, K. Koh, J. Liu, M.D. LeVan, A.l. Benin, P. Jakubczak, M. Lanuza, D.B.
Galloway, J.J. Low, R.R. Willis, Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue
Gas using a Combined Experimental and Modeling Approach, J. Am. Chem. Soc. 131 (2009) 18198-18199.

D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-
organic framework replete with open metal sites, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 20637-20640.

N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, Rod Packings and Metal-Organic Frameworks
Constructed from Rod-Shaped Secondary Building Units, J. Am. Chem. Soc. 127 (2005) 1504-1518.

P.D.C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvag, Hydrogen adsorption in a nickel based coordination
polymer with open metal sites in the cylindrical cavities of the desolvated framework, Chem. Commun. (2006)
959-961.

P.D.C. Dietzel, V. Besikiotis, R. Blom, Application of metal-organic frameworks with coordinatively unsaturated
metal sites in storage and separation of methane and carbon dioxide, J. Mater. Chem. 19 (2009) 7362-7370.

S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a
Coordination Polymer with Cylindrical Pores, J. Am. Chem. Soc. 130 (2008) 10870-10871.
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ZnMOF-74 pore dimensions
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This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Diren for determination of the surface
area.

11.5

ZnMOF-74

alA 25.9322
b /A 25.9322
c/A 6.8365
Cell volume / A3 3981.467
conversion factor for [molec/uc] to [mol per kg Framework] 0.3421
conversion factor for [molec/uc] to [kmol/m3] 0.5881
p [kg/m3] 1219.304
MW unit cell [g/mol(framework)] 2923.473
¢, fractional pore volume 0.709
open space / A3/uc 2823.8
Pore volume / cm?3/g 0.582
Surface area /m?/g 1176.0
DelLaunay diameter /A 9.49
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Zn M O F'74 CBMC simulations of isotherms, and isosteric heats of adsorption
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Influence of Inverse Thermodynamic Factor on diffusivities
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N | M O F '74 pore landscapes

The structural information on NiIMOF-74 ( = Ni,(dobdc) = Ni\(dobdc = CPO-27-Ni) with dobdc = (dobdc* = 2,5-
dioxido-1,4-benzenedicarboxylatee)) were obtained from

A.O. Yazaydin, R.Q. Snurr, T.H. Park, K. Koh, J. Liu, M.D. LeVan, A.l. Benin, P. Jakubczak, M. Lanuza, D.B.
Galloway, J.J. Low, R.R. Willis, Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue
Gas using a Combined Experimental and Modeling Approach, J. Am. Chem. Soc. 131 (2009) 18198-18199.

D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-
organic framework replete with open metal sites, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 20637-20640.

N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, Rod Packings and Metal-Organic Frameworks
Constructed from Rod-Shaped Secondary Building Units, J. Am. Chem. Soc. 127 (2005) 1504-1518.

P.D.C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvag, Hydrogen adsorption in a nickel based coordination
polymer with open metal sites in the cylindrical cavities of the desolvated framework, Chem. Commun. (2006)
959-961.

P.D.C. Dietzel, V. Besikiotis, R. Blom, Application of metal-organic frameworks with coordinatively unsaturated
metal sites in storage and separation of methane and carbon dioxide, J. Mater. Chem. 19 (2009) 7362-7370.

S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a
Coordination Polymer with Cylindrical Pores, J. Am. Chem. Soc. 130 (2008) 10870-10871.
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N | M O F '74 pore dimensions

Surface area / m? g'1
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10.5 11.0 11.5

Pore dimension / A

This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Diren for determination of the surface

NiMOF-74

alA 25.7856
b /A 25.7856
c/A 6.7701
Cell volume / A3 3898.344
conversion factor for [molec/uc] to [mol per kg Framework] 0.3568
conversion factor for [molec/uc] to [kmol/m?3] 0.6133
p [kg/m3] 1193.811
MW unit cell [g/mol(framework)] 2802.592
@, fractional pore volume 0.695
open space / A3/uc 2707.6
Pore volume / cm?3/g 0.582
Surface area /m2/g 1239.0
DelLaunay diameter /A 9.80
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N I M O F '74 isotherms and isosteric heats of adsorption from experiments
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The pure component isotherms, with fits, and isosteric heats of adsorption are those reported by:

Krishna, R.; van Baten, J.M. Investigating the Relative Influences of Molecular Dimensions and Binding Energies
on Diffusivities of Guest Species Inside Nanoporous Crystalline Materials J. Phys. Chem. C 2012, 116, 23556-
23568.
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N i M O F '74: Analysis of membrane permeation experiments

i H2
10'

10°
N2
CH4

10

102 CcO2

NiMOF-74;

298 K

10'3 T T A |
0 5 10 15 20 25

Transport coefficient, (0B/d) / kg m?s’

Isosteric heat of adsorption, -Q,, / kJ mol™

The membrane transport coefficients are the ones presented by:

Krishna, R.; van Baten, J.M. Investigating the Relative Influences of Molecular Dimensions and Binding Energies
on Diffusivities of Guest Species Inside Nanoporous Crystalline Materials J. Phys. Chem. C 2012, 116, 23556-
23568.
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FeMOF-74 pore landscapes

The structural information on FeMOF-74 ( = Fe,(dobdc) = Fe\(dobdc = CPO-27-Fe) with dobdc = (dobdc* = 2,5-
dioxido-1,4-benzenedicarboxylate)) was obtained from

Bloch et al. E.D. Bloch, L. Murray, W.L. Queen, S.M. Chavan, S.N. Maximoff, J.P. Bigi, R. Krishna, V.K. Peterson,
F. Grandjean, G.J. Long, B. Smit, S. Bordiga, C.M. Brown, J.R. Long, Selective Binding of O, over N, in a Redox-

Active Metal-Organic Framework with Open Iron(ll) Coordination Sites, J. Am. Chem. Soc. 133 (2011) 14814-
14822.

E.D. Bloch, W.L. Queen, R. Krishna, J.M. Zadrozny, C.M. Brown, J.R. Long, Hydrocarbon Separations in a Metal-
Organic Framework with Open Iron(ll) Coordination Sites, Science 335 (2012) 1606-1610.
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FeMOF-74 pore dimensions

Surface area / m? g'1
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This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Diren for determination of the surface
area.

FeMOF-74

alA 26.1627
b /A 26.1627
c/A 6.8422
Cell volume / A3 4055.94
conversion factor for [molec/uc] to [mol per kg Framework] 0.3635
conversion factor for [molec/uc] to [kmol/m?3] 0.5807
p [kg/m3] 1126.434
MW unit cell [g/mol (framework)] 2751.321
@, fractional pore volume 0.705
open space / A3/uc 2859.7
Pore volume / cm?3/g 0.626
Surface area /m2/g 1277.4
DelLaunay diameter /A 11.12
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Fe M O F '74 isotherms and isosteric heats of adsorption from experiments

dual-site dual-site

7 F Langmuir-Freundlich F Langmuir-Freundlich s €0
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8 3 Hsotherms; 318 K C ® C A— CoH,
2 E - ° 20 [T O O O T O O T O T CH,
2 9o C @© C
2 " e - FeMOF-74; from
8 - - Fe,(dobdc); S P FeMOF-74; . )
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B - iF;li)rti:?nrgP%qunK L [ fits of isotherms
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10" 102 103 10* 10° 0° 10" 102 103 10* 10° 0 1 2 3 4 5 6 7 8
Bulk gas phase pressure, p, /Pa Bulk gas phase pressure, p, /Pa Absolute loading, g / mol kg

The pure component isotherms, with fits, and isosteric heats of adsorption are those reported by:
He, Y.; Krishna, R.; Chen, B. Metal-Organic Frameworks with Potential for Energy-Efficient Adsorptive Separation
of Light Hydrocarbons. Energy Environ. Sci. 2012, 5, 9107-9120.
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CoMOF-74 pore landscapes
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CoMOF-74 pore dimensions

800
700 ;
- 600 ; COZ(dOde)
‘o r
“e 500 F
5 f CoMOF-74
g 400 -
@ B alA 25.885
S 300 ¢
5 . bIA 25.885
® 200 -
: c/A 6.8058
100
B Cell volume / A3 3949.173
0P .
9.0 9.5 100 105 110 115 conversion factor for [molec/uc] to [mol per kg Framework] 0.3563
i 3
Pore dimension / A conversion factor for [molec/uc] to [kmol/m?3] 0.5945
p [kg/m3] 1180.261
This plot of surface area versus pore MW unit cell [g/mol(framework)] 2806.908
dimension is determined using a
combination of the DeLaunay ;
triangulation method for pore dimension ¢, fractional pore volume 0.707
determination, and the procedure of 3
Diren for determination of the surface open space / Aluc 27931
area. The computational details will be 3
described in detail in a forthcoming Pore volume / cm /g 0.599
publication. Surface area /m2/g 1274.0
DelLaunay diameter /A 9.52
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CO M O F '74 isotherms and isosteric heats of adsorption from experiments

—e— C3Hg
—0— CH,
—v— CH,
—0— CjH,
—A— C,Hq
—m— CH,

20

£¢
T T T T T LT

10  CoMOF-74; from
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[ fits of isotherms

Isosteric heat of adsorption, - Q, / kJ mol™

O7\\\\\\\\\\\\H\\H\\HH\HH\HH\HH\HH\

0o 1 2 3 4 5 6 7 8 9

Absolute loading, q / mol kg"1

The pure component isotherms, with fits, and isosteric heats of adsorption are those reported by:
He, Y.; Krishna, R.; Chen, B. Metal-Organic Frameworks with Potential for Energy-Efficient Adsorptive Separation
of Light Hydrocarbons. Energy Environ. Sci. 2012, 5, 9107-9120.
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M I L—47 pore landscape

The structural information for MIL-47 was taken from

L. Alaerts, C.E.A. Kirschhock, M. Maes, M. van der Veen, V. Finsy, A. Depla, J.A. Martens, G.V. Baron, P.A.
Jacobs, J.F.M. Denayer, D. De Vos, Selective Adsorption and Separation of Xylene Isomers and Ethylbenzene
with the Microporous Vanadium(lV) Terephthalate MIL-47, Angew. Chem. Int. Ed. 46 (2007) 4293-4297.

V. Finsy, H. Verelst, L. Alaerts, D. De Vos, P.A. Jacobs, G.V. Baron, J.F.M. Denayer, Pore-Filling-Dependent
Selectivity Effects in the Vapor-Phase Separation of Xylene Isomers on the Metal-Organic Framework MIL-47,
J. Am. Chem. Soc. 130 (2008) 7110-7118.

K. Barthelet, J. Marrot, D. Riou, G. Férey, A Breathing Hybrid Organic - Inorganic Solid with Very Large Pores
and High Magnetic Characteristics, Angew. Chem. Int. Ed. 41 (2007) 281-284.

Snapshot of CO,/CH, mixture
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M I L—47 dimensions

MIL-47
alA 6.808
b /A 16.12
c/A 13.917
Cell volume / A3 1527.321
conversion factor for [molec/uc] to [mol per kg Framework] 1.0824
conversion factor for [molec/uc] to [kmol/m?3] 1.7868
p [kg/m3] 1004.481
MW unit cell [g/mol(framework)] 923.881
@, fractional pore volume 0.608
open space / A3/uc 929.3
Pore volume / cm3/g 0.606
Surface area /m2/g 1472.8

DelLaunay diameter /A

8.03

One-dimensional diamond-shaped channels with free internal diameter of 8A
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M I L'47 CBMC simulations of isotherms, and isosteric heats of adsorption
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12 1 MIL-47; 300 K;
CBMC simulations
10l 100

—@— CO,

(o]

10"

1072

Component loading, g,/ mol kg’
Component loading, g,/ mol kg'1

4
sl pure components;
5 107 ¢ MIL-47; 300 K;
E CBMC simulations
,A A7 778 'l“m Ll Ll 10—4 Ll Ll Ll Ll Ll
103 10* 10° 108 107 108 103 104 10° 10© 107 108
Bulk fluid phase fugacity, f, /Pa Bulk fluid phase fugacity, f, /Pa

rpure components; MIL-47; 300 K;
20  CBMC simulations

15

|

Isosteric heat of adsorption, -Q,, / kJ mol”

10 |
r —e— CO,
T —=— CH,
5+ A Ar
07 Lol Lol |
0.01 0.1 1

Component loading, g,/ mol kg™



Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics

This journal is © The Owner Societies 2013

Influence of Inverse Thermodynamic Factor on diffusivities
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Influence of Inverse Thermodynamic Factor on diffusivities
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MIL'47 CO, adsorption and diffusion The RDFs show that the degree of

clustering increases as the temperature is

decreased.
_ . r 18 ¢
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M I L'47 CO, adsorption and diffusion; analysis of Salles et al. expt data

_ 10"
+ _ -Salles et al. expt data;

oy 1.5 - (\I.w -pure CO,; MIL-47; clustering;
= : E 230 K 1r>1
g i 5 i
o |- ~
qg L ~
0 3 i

1.0 =
L 0N :
g I 2 100
e} L clustering; 1/T>1 % L
E | A
[} [ o -
£ 05F w r
o L T
g | pure CO, ; IRMOF-1; 230 K; S T o+ M-S b,
2 | from dual-Langmuir- 7] <> Fick D,
- | Sips isotherm fits =

0.0\\\\\\\\\\\\\\\\\\\\\\ 10_1\\\\\\\\\\\\\\\\\\\\\

0 2 4 6 8 0 2 4 6 8
Loading, ©,/ molecules per unit cell Loading, ©,/ molecules per unit cell

These are our CBMC simulation
results, not those of Salles et al.

The experimental results of F. Salles, H. Jobic, T. Devic, P.L. Llewellyn, C. Serre, G. Férey, G. Maurin, Self and Transport Diffusivity
of CO2 in the Metal-Organic Framework MIL-47(V) Explored by Quasi-elastic Neutron Scattering Experiments and Molecular
Dynamics Simulations, ACS Nano 2010, 4, 143-152, show that the Fick diffusivity can be lower than the Maxwell-Stefan diffusivity in
regions where clustering of molecules occurs. The Fick diffusivity decreases with loading in the regions in which 1/T; >1. Please also
note that the Salles data on diffusivities is spatially averaged over x, y, and z directions. Our MD data in the previous slide is for
diffusion in the x-direction. So our diffusivities are expected to be about 3 times higher.
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MIL'47 CH, adsorption and diffusion
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MIL'47 Ar adsorption and diffusion
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MIL'47 CBMC simulation results for CO,-CH, mixtures
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The IAST provides
a good estimation of
component loadings
in the mixture.
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M I L'47 RDFs for CO,-CH, mixtures

radial distribution function

14 CH,-CO, mixture; MIL-47;

1 molecule per uc each;
Total loading ¢= 3.57 kmol m*
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radial distribution function

The RDFs are based on distances
between the centres of mass of the
molecules.

CH,-CO, mixture; MIL-47;
1 molecule per uc each;
Total loading ¢= 3.57 kmol m*
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radial distance between C-C of CH,-CO,/ A

The RDFs demonstrate that
clustering persists in mixtures, and
increases with decreasing
temperature

radial distribution function

CH,-CO, mixture; MIL-47;
.1 molecule per uc each;
% Total loading ¢;= 3.57 kmol m”
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M I L'47 adsorption of xylene isomers

Loading, © / molecules per unit cell

These simulation results are from Castillo, J. M.; Vlugt, T. J. H.; Calero, S. J. Phys. Chem. C 2009, 113, 20869-20874.
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The adsorption selectivity hierarchy oX>mX is dictated by the hierarchy of critical temperatures, i.e. degree of clustering. The
degree of clustering has to be interpreted somewhat differently. As can be seen in the snapshots of the location of o-, p-, and
m- xylenes in the following three slides, the xylene isomers stack nicely within the channels of MIL-47. The stacking efficiency
for o- and p- isomers are significantly superior to that of the m- isomer, as evidenced from the snapshots.
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p-xylene

o-xylene and p-xylene
appear to pack the
channels very well
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o-xylene

o-xylene and p-xylene
appear to pack the
channels very well
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m-xylene

m-xylene does not pack
the channels as well as o-
and p-xylene. This is also
evidenced in the
snapshots.
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MIL - 53 (Cr) pore landscape

The structural data for MIL-53 (Cr) = Cr(OH)(O,C-C¢H,-CO,) was taken from

D.S. Coombes, F. Cora, C. Mellot-Draznieks, R.G. Bell, Sorption-Induced Breathing in the Flexible Metal

Organic Framework CrMIL-53: Force-Field Simulations and Electronic Structure Analysis, J. Phys. Chem. C
113 (2009) 544-552.

Simulation results presented are for —Ip
structure, i.e. large pore
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M I L—53 (C l') pore dimensions

Surface area / m? g'1

1000

800
MIL-53(Cr)-Ip
600

400

200

0\\\\\\\\\\\\\\\\\\\\\\\\\
5.5 6.0 6.5 7.0 7.5 8.0

Pore dimension / A

This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Duren for determination of the surface
area.

MIL53(Cr)-Ip

alA 16.733
b /A 13.038
c/A 6.812
Cell volume / A3 1486.139
conversion factor for [molec/uc] to [mol per kg Framework] 1.0728
conversion factor for [molec/uc] to [kmol/m?3] 2.0716
o [kg/m3] 1041.534
MW unit cell [g/mol(framework)] 932.1312
¢, fractional pore volume 0.539
open space / A3/uc 801.6
Pore volume / cm?3/g 0.518
Surface area /m4/g 1280.5
DelLaunay diameter /A 7.40

One-dimensional lozenge-shaped channels
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Influence of Inverse Thermodynamic Factor on diffusivities
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MIL-53 (Cr) -lp

CBMC simulation results for adsorption of pure CO,
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MIL-53 (Cr)-lp

MD simulations for CO, and CH, diffusion at 300 K
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MIL-53 (Cr)-lp

MD simulations for CO, diffusion
- 1.4

-
N

1.5

e =
o 5
:—'§ § 1.0
o Q
= €
% 10 5 0.8
s, >
5 ©
o o 0.6
£ r clustering; 1/T';>1 %
£ o5l £ 04
© : 2
g rpure CO,; MIL-53(Cr)-Ip; 200 K; 5
2 | Calculations using Dual-Langmuir z 02
- | -Sips fits

00 Lt v b r b br b e b v b 00

0 2 4 6 8 10 12 14 16
Loading, ¢, / kmol m*
y
10 clustering; 10°

i

10° 10°

Self D.

7* iself

r MD simulations; 200 K;
pure CO,; MIL-53(Cr)-Ip

1 O Y O A O A |

0 2 4 6 8 10 12 14 16

Self, M-S, and Fick diffusivities / 10® m?s”
Self, M-S, and Fick diffusivities / 10® m?s™

107 10

Loading, ¢,/ kmol m

at 200 K and 230 K

clustering; 1/T';>1

pure CO,; MIL-53(Cr)-Ip;

230 K;
Calculations using

Dual-Langmuir-Sips fits
I T T Y I I A A A I N A |
0 2 4 6 8 10 12 14 16
Loading, ¢, / kmol m*

clustering;

/

s Self Di,self
r MD simulations; 230 K;
pure CO,; MIL-53(Cr)-Ip
Lrrr v e b e b b b b e g
0 2 4 6 8 10 12 14 16

Loading, ¢, / kmol m™®

Normalized Fick diffusivity, D/B,(0)

100

107

@® 300K
v 230K
<& 200K

Combined GCMC and MD;
pure CO,; MIL-53(Cr)-Ip

0 2 4 o6 8 10 12 14 16

Loading, ¢, / kmol m?

The experimental data of the Fick
diffusivity at 230 K, published by
Salles et al. (Angew. Chem. Int. Ed.
2009, 48, 8335-8339), shows that
for the regions in which 1/T’; >1 the
Fick diffusivity decreases with the
loading.
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1D micro-porous channels
With side pockets
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M O R pore landscape

MOR

alA 18.094
b /A 20.516
c/A 7.524
Cell volume / A3 2793.033
conversion factor for [molec/uc] to [mol per kg Framework] 0.3467
conversion factor for [molec/uc] to [kmol/m3] 2.0877
p [kg/m3] 1714.691
MW unit cell [g/mol(framework)] 2884.07
¢, fractional pore volume 0.285
open space / A3/uc 795.4
Pore volume / cmd/g 0.166
Surface area /m2/g 417.0

6.44

Launay diameter /A
Y P

Structural information from: C. Baerlocher, L.B. McCusker, Database
of Zeolite Structures, International Zeolite Association,
http://www.iza-structure.org/databases/
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M O R pore dimensions

12-ring
main channels

MOR Channel [1 0 0]
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NE C This plot of surface area versus pore
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o L combination of the DeLaunay
© 150 & triangulation method for pore dimension
3 C determination, and the procedure of
~§:“ C Diiren for determination of the surface
> 100 - area
(j) r .
50 |
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M O R CBMC simulations of isotherms, and -Q;; MD simulations of diffusivities

7 —
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2 | CBMC simulations =
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Note that C2 and C3 above refer to
saturated alkanes.

50 pure components; MOR; 300 K;

CBMC simulations
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—m— CH,

pure components;
MOR; 300 K;
CBMC simulations

102
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Bulk fluid phase fugacity, f, /Pa

CO, preferentially locates
in the side pockets as
shown in snapshot. At a
loading of 4/uc = 1.39
mol/kg, the pockets are
full. This causes an
infection. This also
explains the high heat of
adsorption due to snug fits
in the side pockets
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M O R MD simulations of unary diffusivities
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MOR; 300 K; MOR; 300 K;
- MD simulations _ MD simulations
N; : ‘n :
© g
e 10k %D 100 b
i S
T s
_g r = i
= (]
g 10" —m— CH, £ 107 | —m— CH,
S : —e CO, o ; —e- CO,
8 r —&— C2 = i —&— C2
- —v— C3 - v C3
10-2\\\\\\\\\\\\\\\\\\\\\\\\\ 10-2\\\\\\\\\\\\\\\\\\\\\\\\\
0 1 2 3 4 5 0 1 2 3 4 5
Component loading, g,/ mol kg™ Component loading, g,/ mol kg

CO, preferentially locates
in the side pockets in this
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explains the low
diffusivities.
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Influence of 1/T; and —-Q, on diffusivities

Side
pockets

CO, preferentially locates in the side pockets as shown in snapshot.
At a loading of 4/uc = 8.35 kmol m3, the pockets are full. This
causes an infection. This also explains the high heat of adsorption
due to snug fits in the side pockets
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“Open” structures with
large cavities
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FAU 'Sl pore landscape

The sodalite cages are blocked in
simulations and are not accessible to guest
molecules; these are excluded for pore
volume determination.

12-ring
window of FAU

There are 8 cages per unit cell.
The volume of one FAU cage is
786 A3, larger in size than that of
LTA (743 A3) and DDR (278 A3).

Structural information from: C. Baerlocher,
L.B. McCusker, Database of Zeolite
Structures, International Zeolite Association,
http://www.iza-structure.org/databases/
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FAU-Si wi imensi
= | window and pore dimensions :
800 -
‘TO'J :
This plot of surface area versus pore NE 600 B
dimension is determined using a ~ H
combination of the DeLaunay g r
triangulation method for pore dimension ®© H
determination, and the procedure of 3 400 r
Diren for determination of the surface 8 -
area. a r
200 |-
0 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |
10.0 10.5 11.0 11.5 12.0
Pore dimension / A
FAU-SI
alA 24.28
b /A 24.28
c/A 24.28
Cell volume / A3 14313.51
conversion factor for [molec/uc] to [mol per kg Framework] 0.0867
conversion factor for [molec/uc] to [kmol/m3] 0.2642
p [kg/m3] 1338.369
MW unit cell [g/mol (framework)] 11536.28
¢, fractional pore volume 0.439
open space / A3/uc 6285.6
Pore volume / cm?3/g 0.328
Surface area /m2/g 1086.0
DelLaunay diameter /A 7.37
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FAU 'Sl CBMC simulations of isotherms, and isosteric heats of adsorption
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Influence of Inverse Thermodynamic Factor on diffusivities
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Influence of Inverse Thermodynamic Factor on diffusivities

Self-, and M-S diffusivities / 108 m?s™
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Influence of Inverse Thermodynamic Factor on diffusivities
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FAU 'Si CO, adsorption and diffusion
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FAU 'Si CH, adsorption and diffusion
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FAU 'Si Ar adsorption and diffusion
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FAU 'Sl CBMC simulations of isotherms and thermodynamic factors for n-alkanes
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The degree of clustering increases
with increasing chain length of n-
alkanes.
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Influence of Inverse Thermodynamic Factor on diffusivities

Self-, and M-S diffusivities / 10° m?s™
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NaY (138 Si, 54 Al, 54 Na+, Si/Al=2.55)
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Blue spheres are cations

FAU-
54Al

alA 25.028
b /A 25.028
c/A 25.028
Cell volume / A3 15677.56
conversion factor for [molec/uc] to

[mol per kg Framework] 0.0786
conversion factor for [molec/uc] to

[kmol/m3] 0.2596
p [kg/m3] (with cations) 13471
MW unit cell

[g/mol(framework+cations)] 12718.08
@, fractional pore volume 0.408
open space / A3/uc 6396.6
Pore volume / cm?3/g 0.303
Surface area /m2/g

DelLaunay diameter /A 7.37
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Influence of Inverse Thermodynamic Factor on diffusivities
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NaY CH, self-diffusivity at 200 K
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The QENS experimental data are re-plotted using the information in:

|. Déroche, G. Maurin, B.J. Borah, H. Jobic, S. Yashonath, Diffusion of pure CH4 and its binary mixture with COZ2 in
Faujasite NaY: A combination of neutron scattering experiments and Molecular Dynamics simulations, J. Phys. Chem. C
114 (2010) 5027-5034.

The CBMC simulations of the inverse thermodynamic factor are from our earlier works:

R. Krishna, J.M. van Baten, Investigating cluster formation in adsorption of CO2, CH4, and Ar in zeolites and metal
organic frameworks at sub-critical temperatures, Langmuir 26 (2010) 3981-3992.

R. Krishna, J.M. van Baten, A rationalization of the Type IV loading dependence in the Karger-Pfeifer classification of self-
diffusivities, Microporous Mesoporous Mater. 142 (2011) 745-748.
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NaX (106 Si, 86 Al, 86 Na+, Si/Al=1.23)
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Cell volume / A3 15677.56
conversion factor for [molec/uc]

to [mol per kg Framework] 0.0745
conversion factor for [molec/uc]

to [kmol/m3] 0.2658
p [kg/m3] (with cations) 1421.277
MW unit cell

[g/mol(framework+cations)] 13418.42
@, fractional pore volume 0.399
open space / A3/uc 6248.0
Pore volume / cm?3/g 0.280
Surface area /m4/g

DelLaunay diameter /A 7.37




Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics

This journal is © The Owner Societies 2013

Influence of Inverse Thermodynamic Factor on diffusivities
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N aX NMR experiments of Caro
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The experimental data are from
Caro, J.; Bulow, M.; Schirmer, W.; Karger, J.; Heink, W.; Pfeifer, H. Microdynamics of methane, ethane and propane in ZSM-5
type zeolites. Journal of the Chemical Society, Faraday Transactions 1985, 81, 2541-2550.
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NaX: Transient uptake of n-heptane and benzene
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The data are re-plotted using the information contained in
Karger, J.; Bulow, M. Theoretical prediction of uptake behaviour in adsorption kinetics of binary gas mixtures using irreversible
thermodynamics, Chem. Eng. Sci. 1975, 30, 893-896.

The overshoot in the nC7 uptake is a direct consequence of thermodynamic coupling caused by the off-diagonal elements of

I, I - df.
{ H 12} where T :ii
1_‘21 1_‘21 ]Fl aqj

This has been demonstrated by
Krishna, R. Multicomponent surface diffusion of adsorbed species - A description based on the generalized Maxwell-Stefan
equations, Chem. Eng. Sci. 1990, 45, 1779-1791.

El 1—‘12 1 0
If the thermodynamic coupling is ignored, i.e. we assume L T = 0 1
21 21

the nC7 overshoot disappears.
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CuBTC pore landscapes

The structural information for CuBTC (= Cu,(BTC), with BTC =
1,3,5-benzenetricarboxylate) have been taken from

S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D.
Williams, A chemically functionalizable nanoporous material
[Cus(TMA),(H20),],,, Science 283 (1999) 1148-1150.

The crystal structure of Chui et al. includes axial oxygen atoms
weakly bonded to the Cu atoms, which correspond to water
ligands. Our simulations have been performed on the dry
CuBTC with these oxygen atoms removed.

Q. Yang, C. Zhong, Electrostatic-Field-Induced Enhancement of
Gas Mixture Separation in Metal-Organic Frameworks: A
Computational Study, ChemPhysChem 7 (2006) 1417-1421.
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CuBTC pore dimensions

700
F X
§ CuBTC
5, 500 F CuBTC alA 26.343
E oot b IA 26.343
@ L
o F c/A 26.343
o 300
3! - Cell volume / A3 18280.82
‘€ L
@ 200 - conversion factor for [molec/uc] to [mol per kg Framework] 0.1034
100 F conversion factor for [molec/uc] to [kmol/m3] 0.1218
04 p [kg/m3] 878.8298
4 6 8 10 12 14 MW unit cell [g/mol(framework)] 9674.855
Pore dimension / A ¢, fractional pore volume 0.746
_ open space / A3/uc 13628.4
This plot of surface area versus pore
dimension is determined using a Pore volume / cm3/g 0.848
combination of the DeLaunay .
triangulation method for pore dimension Surface area /m2/g 2097.0
determination, and the procedure of .
Diren for determination of the surface DelLaunay diameter A 6.23
area.

The CuBTC structure consists of two types of “cages” and two types of
“windows” separating these cages. Large cages are inter-connected by 9 A
windows of square cross-section. The large cages are also connected to
tetrahedral-shaped pockets of ca. 6 A size through triangular-shaped windows of
ca. 4.6 A size
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C u BTC CBMC simulations of isotherms, and isosteric heats of adsorption

Component loading, g,/ mol kg

Isosteric heat of adsorption, -Q,, / kJ mol”

|

20
18
16
14

1

40

30

20

10

0.001

pure components;
CuBTC; 300 K;
CBMC simulations

—&— nC6
—0— nC5
—%— nC4
—v— C3
—— CO,
+
4D7
#

C2
CH,

o N A O ®» O

10°

Bulk fluid phase fugacity, f, /Pa

pure components; CuBTC; 300 K;
CBMC simulations

0.01 0.1 1

Component loading, g,/ mol kg’

PITREIEIEY

Note that C2 and C3 refer to saturated
alkanes

nC5
nC4

Component loading, g,/ mol kg'1

10!
100 —&— nC6
—0— nC5
—%— nC4
10
—v— C3
102 —&- CO,
—— C2
10 —m— CH,
—o— H,
10 —fe— Ar
pure components; —{}— Kr
10° CuBTC; 300 K; ~— Ne

CBMC simulations

10° 10" 102 10% 10* 105 10® 107 108

Bulk fluid phase fugacity, f, /Pa



Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013

Influence of —Q, on diffusivities 3.0 125 o
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Influence of —Q_; on diffusivities
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Influence of —Q_; on diffusivities
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Influence of —Q_; on diffusivities
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C u BTC MD simulations of unary self-, and M-S diffusivities
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I RM O F '1 pore landscape

For IRMOF-1 (= MOF 5 = Zn,O(BDC), with BDC? = 1-4
benzenedicarboxylate) the structural information was
obtained from

D. Dubbeldam, K.S. Walton, D.E. Ellis, R.Q. Snurr,
Exceptional Negative Thermal Expansion in Isoreticular
Metal-Organic Frameworks, Angew. Chem. Int. Ed. 46
(2007) 4496-4499.

D. Dubbeldam, H. Frost, K.S. Walton, R.Q. Snurr,
Molecular simulation of adsorption sites of light gases in
the metal-organic framework IRMOF-1, Fluid Phase
Equilib. 261 (2007) 152-161.

Snapshot of CO,/CH, mixture
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I RM O F'1 pore dimensions

1600
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Surface area/ m* g
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200

IRMOF-1

Pore dimension / A

This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Diren for determination of the surface
area.

IRMOF-1

alA 25.832
b /A 25.832
c/A 25.832
Cell volume / A3 17237.49
conversion factor for [molec/uc] to [mol per kg Framework] 0.1624
conversion factor for [molec/uc] to [kmol/m?3] 0.1186
p [kg/m3] 593.2075
MW unit cell [g/mol(framework)] 6157.788
¢, fractional pore volume 0.812
open space / A3/uc 13996.3
Pore volume / cm?3/g 1.369
Surface area /m4/g 3522.2
DelLaunay diameter /A 7.38

Two alternating, inter-connected, cavities of 11 A and 15 A with window size of 8 A.
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I RM O F '1 CBMC simulations of isotherms, and isosteric heats of adsorption
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IRMOF'1 CO, adsorption and diffusion
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IRMOF'1 CH, adsorption and diffusion

clustering; 1/T'>1

Pure CH,
IRMOF-1

Inverse thermodynamic factor, 1/T;

A

0 2 4 6 8 10 12

Loading, ¢, / kmol m™®

Self, M-S, and Fick diffusivities / 10 m?s™

102 -
F MD simulations;
r pure C1 (CH,, methane); IRMOF-1;
300 K

10!

0 5 10 15 20

Loading, ¢, / kmol m?

1OO§$FickDi

- = MSD

| e Self D,
10-1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Inverse thermodynamic factor, 1/T,

Self, M-S, and Fick diffusivities / 10% m?s™

1.5

1.0¢

0.5

0.0

clustering; 1/T;>1

Pure CH,
IRMOF-1; 150 K;
from dual-Langmuir-Sips fits

0

1.4

1.2

1.0

0.8

0.6

0.4

2

4

6 8 10 12 14 16 18

Loading, ¢, / kmol m?

6 8 10 12

Loading, ¢, / kmol m3

14 16 18



Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013

IRMOF'1 Ar adsorption and diffusion
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IRMOF'1 CBMC simulations for linear alkanes
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IRMOF'1 CBMC simulations for pure C4 and C5 isomers
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IRMOF'1 RDFs for pure alkanes
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IRMOF'1 Comparison of RDFs of n-alkanes
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IRMOF'1 RDF comparison of linear and branched alkanes
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MOF-1 77 pore landscape

The structural information for MOF-177 (= Zn,O(BTB), with (BTB3- = 1,3,5-benzenetribenzoate)) is provided by

H.K. Chae, D.Y. Siberio-Pérez, J. Kim, Y.B. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, O.M. Yaghi, A route to
high surface area, porosity and inclusion of large molecules in crystals, Nature 427 (2004) 523-527.
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MOF'1 77 pore dimensions

1600
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Surface area / m? g'1
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Pore dimension / A

This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Diren for determination of the surface
area.

MOF-177

alA 37.072
b IA 37.072
c/A 30.033
Cell volume / A3 35745.5
conversion factor for [molec/uc] to [mol per kg Framework] 0.1089
conversion factor for [molec/uc] to [kmol/m?3] 0.0553
p [kg/m3] 426.5952
MW unit cell [g/mol(framework)] 9182.931
¢, fractional pore volume 0.840
open space / A3/uc 30010.9
Pore volume / cm?3/g 1.968
Surface area /m2/g 4781.0
DelLaunay diameter /A 10.1

Tetrahedral [Zn,O]%* units are linked by large, triangular tricarboxylate ligands. Six
diamond-shaped channels (upper) with diameter of 10.8 A surround a pore containing

eclipsed BTB3- moieties.
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M O F'1 77 CBMC simulations of isotherms, and isosteric heats of adsorption
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M O F'1 77 MD simulations of unary self-, and M-S diffusivities
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Intersecting channels
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BEA pore landscape

g

Intersecting channels of two sizes:

12-ring and 10-ring

BEA
alA 12.661
b /A 12.661
c/A 26.406
Cell volume / A3 4232.906
conversion factor for [molec/uc] to [mol per kg Framework] 0.2600
conversion factor for [molec/uc] to [kmol/m?3] 0.9609
p [kg/m3] 1508.558
MW unit cell [g/mol(framework)] 3845.427
¢, fractional pore volume 0.408
open space / A3/uc 1728.1
Pore volume / cm?3/g 0.271
Surface area /m2/g 923.0
DelLaunay diameter /A 5.87

Structural information from: C. Baerlocher, L.B. McCusker, Database of
Zeolite Structures, International Zeolite Association, http://www.iza-

structure.org/databases/
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Influence of Inverse Thermodynamic Factor on diffusivities

Self-, and M-S diffusivities / 108 m?s™
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A detailed analysis of the
loading dependence of CH, in
BEA is contained in

E. Beerdsen, D. Dubbeldam
and B. Smit, J Phys Chem B,
2006, 110, 22754-22772.

E. Beerdsen, D. Dubbeldam
and B. Smit, Phys. Rev. Lett.,
2006, 96, 044501.
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BOG pore landscape

Intersecting channels:
12-ring and 10-ring

BOG
alA 20.236
b /A 23.798
c/A 12.798
Cell volume / A3 6163.214
conversion factor for [molec/uc] to [mol per kg Framework] 0.1734
conversion factor for [molec/uc] to [kmol/m3] 0.7203
p [kg/m3] 1995.523
MW unit cell [g/mol(framework)] 5768.141
@, fractional pore volume 0.374
open space / A3/uc 2305.4
Pore volume / cm?3/g 0.241
Surface area /m4/g 758.0
Delaunay diameter /A 5.02

Structural information from: C. Baerlocher, L.B. McCusker, Database of Zeolite Structures, International Zeolite

Association, http://www.iza-structure.org/databases/
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BOG pore dimensions

This plot of surface area versus pore dimension is
determined using a combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of Diiren for
determination of the surface area.

BOG has an intersecting channel system:
12-ring channels intersecting with 10-ring channels
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Loading dependence of diffusivities

2.0 =5 A detailed analysis of the

@ Do loading dependence of CH, in
BOG is contained in

1.5
E. Beerdsen, D. Dubbeldam

and B. Smit, J Phys Chem B,
1.0 2006, 110, 22754-22772.

E. Beerdsen, D. Dubbeldam

and B. Smit, Phys. Rev. Lett.,

0.5 2006, 96, 044501.
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F E R pore landscape

8-ring channels

10-ring channels

This is one unit cell

There are two 10-ring channels
There are two 8-ring channels

Structural information from: C. Baerlocher, L.B. McCusker, Database of Zeolite Structures, International Zeolite
Association, http://www.iza-structure.org/databases/
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F E R pore landscape

8-ring channels

10-ring channels
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F E R pore dimensions
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F E R pore landscape

FER

alA 19.156
b /A 14.127
c/A 7.489
Cell volume / A3 2026.649
conversion factor for [molec/uc] to [mol per kg Framework] 0.4623
conversion factor for [molec/uc] to [kmol/m3] 2.8968
p [kg/m3] 1772.33
MW unit cell [g/mol (framework)] 2163.053
¢, fractional pore volume 0.283
open space / A3/uc 573.2
Pore volume / cm3/g 0.160
Surface area /m2/g 403.0
Delaunay diameter /A 4.65
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F E R CBMC simulations of isotherms, and -Q.,; MD simulations of diffusivities
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ISV pore landscape Intersecting 12-ring channels structure
| —/'/ r
ISV
alA 12.853
¢ b /A 12.853
c/A 25.214
Cell volume / A3 4165.343
) conversion factor for [molec/uc] to [mol per kg Framework] 0.2600
~ b . conversion factor for [molec/uc] to [kmol/m3] 0.9361
p [kg/m3] 1533.027
MW unit cell [g/mol(framework)] 3845.427
] _ . ¢, fractional pore volume 0.426
.« | open space/ A3/uc 1773.9
o . Pore volume / cm®/g 0.278
Surface area /m?/g 911.0
DelLaunay diameter /A 5.96

Structural information from: C. Baerlocher, L.B. McCusker, Database of Zeolite Structures, International Zeolite Association,

http://www.iza-structure.org/databases/
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700

ISV pore dimensions

600

This plot of surface area versus pore
dimension is determined using a
combination of the DeLaunay
triangulation method for pore dimension
determination, and the procedure of
Diren for determination of the surface
area.
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Influence of Inverse Thermodynamic Factor on diffusivities

= b, A detailed analysis of the
—0— Do loading dependence of CH, in
ISV is contained in

E. Beerdsen, D. Dubbeldam

and B. Smit, J Phys Chem B,
ISV; 300 K; 2006, 110, 22754-22772.
MD; CH,

E. Beerdsen, D. Dubbeldam
and B. Smit, Phys. Rev. Lett.,
2006, 96, 044501.

Self-, and M-S diffusivities / 10° m?s™

o\\\\\\\\\\\\\\\\\\\\\\\
0 5 10 15 20 25 30 35

Pore concentration, ¢, / kmol m>
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M FI pore landscape

MFI
alA 20.022
b /A 19.899
c/A 13.383
Cell volume / A3 5332.025
conversion factor for [molec/uc] to [mol per kg Framework] 0.1734
conversion factor for [molec/uc] to [kmol/m3] 1.0477
p [kg/m3] 1796.386
MW unit cell [g/mol(framework)] 5768.141
¢, fractional pore volume 0.297
open space / A3/uc 1584.9
Pore volume / cmd/g 0.165
Surface area /m?/g 487.0
DelLaunay diameter /A 5.16

Structural information from: C. Baerlocher, L.B. McCusker,
Database of Zeolite Structures, International Zeolite Association,
http://www.iza-structure.org/databases/
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M FI pore dimensions T
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M FI CBMC simulations of isotherms, and isosteric heats of adsorption
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Influence of Inverse Thermodynamic Factor on diffusivities
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Influence of Inverse Thermodynamic Factor on diffusivities
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A detailed analysis of the
loading dependence of CH, in
MFI is contained in

E. Beerdsen, D. Dubbeldam
and B. Smit, Phys. Rev. Lett.,
2005, 95, 164505.

E. Beerdsen, D. Dubbeldam
and B. Smit, J Phys Chem B,
2006, 110, 22754-22772.

E. Beerdsen, D. Dubbeldam
and B. Smit, Phys. Rev. Lett.,
2006, 96, 044501.
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Influence of Inverse Thermodynamic Factor on diffusivities

Self-, and M-S diffusivities / 10° m?s™’
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nC6 diffusivity in MFI zeolite
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Linear, chain, alkanes can locate
anywhere along the channels of MFI.
The length of nC6 is commensurate with
the distance between two intersections

The QENS experimental data are re-plotted using the information in:

M-S diffusivity, £,/ 10"° m?s™
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nC6 in MFI; 300 K;
QENS experiments;
Jobic et al. 2006
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H. Jobic, C. Laloué, C. Laroche, J.M. van Baten, R. Krishna, Influence of isotherm inflection on the loading dependence of the
diffusivities of n-hexane and n-heptane in MFI zeolite. Quasi-Elastic Neutron Scattering experiments supplemented by molecular

simulations, J. Phys. Chem. B 110 (2006) 2195-2201.
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nC7 diffusivity in MFI zeolite

The length of nC7 is not commensurate
with the distance between two
intersections

The QENS experimental data are re-plotted using the information in:

M-S diffusivity, £,/ 10™"° m?s™

nC7 in MFI; 300 K;
QENS experiments;
Jobic et al. 2006
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H. Jobic, C. Laloué, C. Laroche, J.M. van Baten, R. Krishna, Influence of isotherm inflection on the loading dependence of the
diffusivities of n-hexane and n-heptane in MFI zeolite. Quasi-Elastic Neutron Scattering experiments supplemented by molecular

simulations, J. Phys. Chem. B 110 (2006) 2195-2201.
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Benzene diffusivity in MFI zeolite
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The experimental data are re-plotted after converting Fick diffusivities to Maxwell-Stefan diffusivities using:

Ban, H.; Gui, J.; Duan, L.; Zhang, X.; Song, L.; Sun, Z. Sorption of hydrocarbons in silicalite-1 studied by intelligent gravimetry. Fluid
Phase Equilib. 2005, 232, 149-158.

Inverse Thermodynamic factor, 1/ T,
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MFI: Traffic junction effects for nC4/iC4 mixture diffusion
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The experimental data are re-plotted using the data of:

Fernandez, M.; Karger, J.; Freude, D.; Pampel, A.; van Baten, J. M.; Krishna, R. Mixture diffusion in zeolites studied by MAS PFG
NMR and molecular simulation, Microporous Mesoporous Mater. 2007, 105, 124-131.
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MFI: Traffic junction effects for CH4/Benzene mixture diffusion

CH,-Bz; mixture diffusion; @

CH, loading, ©,,, = 3/uc;

MFI; 300 K;
Forste expt @

10

o Mo

@

o
T T T T TTTTT
()
Q9 @

(]
(@

(8

Self diffusivity of CH,, D,,, / 10°m’s

0.01 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |
0 1 2 3 4

Loading of Bz/ molecules per unit cell

The experimental data are re-plotted using the data of: | """
|
Forste, C.; Germanus, A.; Karger, J.; Pfeifer, H.; Caro, J.; | (
Pilz, W.; Zikanova, A. Molecular mobility of methane g
adsorbed in ZSM-5 containing co-adsorbed benzene, and N ’(
the location of benzene molecules, J. Chem. Soc., Faraday | (
Trans. 1. 1987, 83, 2301-2309. )
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MFI: Traffic junction effects for nC6/2MP mixture diffusion
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The experimental data are re-plotted using the data of:
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Koriabkina, A. O.; de Jong, A. M.; Schuring, D.; van Grondelle, J.; van Santen, R. A. Influence of the acid sites on the intracrystalline
diffusion of hexanes and their mixtures within MFl-zeolites, J. Phys. Chem. B 2002, 106, 9559-9566.
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Zn(de)dabCO landscapes

The structural information for Zn(bdc)(dabco), 5, commonly
simply referred to as Zn(bdc)dabco, is from

P.S. Barcia, F. Zapata, J.A.C. Silva, A.E. Rodrigues, B. Chen,
Kinetic Separation of Hexane Isomers by Fixed-Bed Adsorption

with a Microporous Metal-Organic Framework, J. Phys. Chem. B
111 (2008) 6101-6103.

J.Y. Lee, D.H. Olson, L. Pan, T.J. Emge, J. Li, Microporous
Metal-Organic Frameworks with High Gas Sorption and
Separation Capacity, Adv. Funct. Mater. 17 (2007) 1255-1262.
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Zn(bdc)dabco

landscapes

3D intersecting channels

There exist two types of intersecting channels
of about 7.5 A x 7.5 A along the x-axis and
channels of 3.8 A x 4.7 A along y and z axes.

Wide
channels Narrow
channels

75Ax75A 47Ax3.8A
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Zn(de)dabCO pore dimensions

Surface area / m? g‘1
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Pore dimension / A

This plot of surface area versus pore

dimension is determined using a
combination of the DeLaunay

triangulation method for pore dimension

determination, and the procedure of

Duren for determination of the surface

area.

alA 10.9288
b /A 10.9288
c/A 9.6084
Cell volume / A3 1147.615
conversion factor for [molec/uc] to [mol per kg Framework] 1.7514
conversion factor for [molec/uc] to [kmol/m?3] 2.1867
p [kg/m3] 826.1996
MW unit cell [g/mol(framework)] 570.9854
@, fractional pore volume 0.662
open space / A3/uc 759.4
Pore volume / cm?3/g 0.801
Surface area /m2/g 2022.5
DelLaunay diameter /A 8.32
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Influence of Inverse Thermodynamic Factor on diffusivities
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