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  Cl Ring Br 

2-BCB 
neutral -0.375 0.046 0.329 

anion -0.429 0.078 -0.649 

3-BCB 
neutral -0.364 0.192 0.172 

anion -0.458 0.234 -0.776 

4-BCB 
neutral -0.353 0.140 0.213 

anion -0.437 0.210 -0.773 

 

 

TABLE S1. Mulliken atomic charges for the three isomers of BCB calculated at the MP2/aug-cc-pVDZ 

level. Most of the negative charge (0.95 ~ 0.98 e) is invested on the less electronegative Br atom upon 

electron attachment, which undergoes a drastic change from a positively charged moiety in the neutral to 

the strongest negatively charged one in the anion. 
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Br Ring I 

2-BIB 
neutral 0.036 -0.258 0.222 

anion -0.090 -0.220 -0.690 

3-BIB 
neutral 0.013 -0.205 0.192 

anion -0.106 -0.136 -0.758 

4-BIB 
neutral 0.014 -0.206 0.192 

anion -0.105 -0.212 -0.683 

  Cl Ring I 

2-CIB 
neutral -0.067 -0.164 0.231 

anion -0.181 -0.224 -0.5954 

3-CIB 
neutral -0.086 -0.110 0.196 

anion -0.186 -0.156 -0.658 

4-CIB 
neutral -0.083 -0.112 0.195 

anion -0.184 -0.133 -0.683 

 

 

TABLE S2. Mulliken atomic charges of the three isomers of BIB and CIB calculated at the 

MP2/LanL2DZ level. Here, it is the I atom, again the least electronegative moiety, that undergoes the 

most drastic change in atomic charge upon electron attachment.  
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FIG. S1. Optimized structures of [2-BCB-(H2O)1] and [2-BCB-(H2O)1]

. In the neutral state, an H atom of 

water directly interacts with Cl, which is the only negatively charged moiety in 2-BCB. In the anionic 

state, water moves toward the Br atom for a more preferential interaction, with its H atom forming a 

tighter bond with Br, which accommodates most of the negative charge in electron attachment. Note the 

C–Br bond is significantly elongated in BCB

. 
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FIG. S2. Neutral HOMO and anionic SOMO of [2-BCB-(H2O)1]

. Cl and Br are colored green and red, 

respectively. Water interacts directly with Cl in the neutral but switches to a preferential interaction with 

the Br-end in the anion. Calculations were carried out using Gaussian 03, revision C.02 with B3LYP/6-

311++G**. 
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FIG. S3. Calculated potential energy curves of 4-BCB. The energies were calculated as a function of the 

CBr distance from 1.4 to 6.4 Å. There is a curve-crossing between two anionic potential energy curves 

(
2
A2 and 

2
A1) at ~2.0 Å, after which the 

2
A1 state becomes the anionic ground state with a shallow 

minimum at ~2.5 Å. The neutral ground state (also of A1 symmetry) is lower in energy than even the 

anionic 
2
A2 state at short distances, but quickly rises in energy as the CBr distance increases. 

Calculations were carried out using Gaussian 03, revision C.02 at the B3LYP/6-311++G** level. 
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neutral (HOMO) anion (SOMO)

 

 

FIG. S4. Neutral HOMO and anionic SOMO of 2-BCB (top) and 3-BCB (bottom). Cl and Br are colored 

green and red, respectively. The HOMO of the neutral molecule is a non-bonding orbital, with a node 

between C and Br. The SOMO of the anion is highly developed around the Br moiety, as in the case of 4-

BCB (Fig. 5 of the main text). Calculations were carried out using Gaussian 03, revision C.02 at the 

MP2/aug-cc-pVDZ level. 
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FIG. S5. Mass spectrum of 4-CIB cluster anions. The most intense peak is due to I

, with the cluster 

anions trailing in intensity in a rapidly decreasing manner. 
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FIG. S6. Photoelectron spectrum of (a) 2-CIB, (b) 3-CIB and (c) 4-CIB monomer anions. The sharp 

atomic photoelectron band of I

 at 3.06 eV is due to a two-photon process involving photodissociation 

followed by photodetachment. As in the case of BCB, the broad photoelectron spectrum from 1.5 to 3.0 

eV can be deconvoluted into two Gaussian bands separated by ~0.5 eV.  
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Neutral Anion 

(a)   

(b)   

(c)   

 

 

FIG. S7. Optimized geometries for the three isomers of neutral and anionic BIB. Br and I are colored red 

and purple, respectively. The C–Br bond length increases drastically from 2.2 to 2.7 Å upon electron 

attachment, indicating the anti-bonding nature of the SOMO localized around the C–Br bond. Most of the 

approaching electron’s charge (87 ~ 95%) goes to the I atom. Note that neither halogen atom has a 

negative charge in neutral BIB.  
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Neutral Anion 

(a)   

(b)   

(c)   

 

 

FIG. S8. Optimized geometries for the three isomers of neutral and anionic CIB. Cl and I are colored 

green and purple, respectively. As with BIB, the C–I bond length increases drastically from 2.2 to 2.7 Å 

upon electron attachment, and most of the approaching electron’s charge (83 ~ 87%) goes to the I atom.  
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FIG. S9. Neutral HOMO and anionic SOMO of 2-BIB (top) and 3-BIB (bottom). Br and I are colored red 

and purple, respectively. The HOMO of the neutral molecule is a non-bonding orbital, with a node 

between C and I. The SOMO of the anion is highly developed around the I moiety. Calculations were 

carried out using Gaussian 03, revision C.02 at the MP2/LanL2DZ level. 
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FIG. S10. Neutral HOMO and anionic SOMO of 2-CIB (top), 3-CIB (middle), and 4-CIB (bottom). Cl 

and I are colored green and purple, respectively. The HOMO of the neutral molecule is a non-bonding 

orbital, with a node between C and I. The SOMO of the anion is highly developed around the I moiety. 

Calculations were carried out using Gaussian 03, revision C.02 at the MP2/LanL2DZ level. 
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