Supporting Information

Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting

Xinjian Shi[†], Kan Zhang[†], Kahee Shin[†], Jun Hyuk Moon[‡], Tae-Woo Lee[§], Jong Hyeok Park[†]

[†]School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea lutts@skku.edu

[‡]Department of Chemical and Biomolecular Engineering, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742, Korea

[§]Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, Korea

Email Address: lutts@skku.edu

Figure S1. FE-SEM image of different sized PS colloid templates: (a) 250 nm,

(b) 500 nm and (c) 900 nm; (d) the section image for a general PS template.

Figure S2. The optical band gap (Eg) of the IOS α -Fe₂O₃ electrodes made by 250nm beads under 400 °C annealing with different electrodeposition time.

Figure S3. TGA data of PS beads as template.

Figure S4 (a) the morphology of a general planar α -Fe₂O₃, (b) the I-V curve of the planar α -Fe₂O₃ vs. potential in 1M NaOH electrolyte under AM 1.5G light.