ARTICLE TYPE

Environmental and complexation effects on the structures and spectroscopic signatures of organic pigments relevant for cultural heritage: the case of Alizarin and Alizarin-Mg(II)/Al(III) complexes. SUPPORTING INFORMATION

Luciano Carta^a, Malgorzata Biczysko^{*a}, Julien Bloino^{a,b}, Daniele Licari^a and Vincenzo Barone^a

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

Fig. 1 Frontier molecular orbitals (plots with isovalue threshold of 0.02 and relative energy positions in a.u.) for neutral (left frame) and anionic (right frame) alizarin.

^a Scuola Normale Superiore and INSTM M3-Village, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; E-mail: malgorzata.biczysko@sns.it, vincenzo.barone@sns.it ^b Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca CNR, via G. Moruzzi 1, I-56124 Pisa, Italy.

This journal is © The Royal Society of Chemistry [year]

Journal Name, 2010, **[vol]**, 1–8 | 1

Table 1 Excited state properties of neutral, mono- and di-deprotonated alizarin in methanol solution, computed at the TD-CAM-B3LYP/aug-N07D//C-PCM level within the non-equilibrium solvation regime. Vertical excitation energies (VE) [eV], absorption wavelengths (λ [nm]) and oscillator strengths (f) are reported along with the most important molecular orbitals (MOs) involved in the transitions

Tepontou unong	MO		1 . 1	<u></u>	
Tautomer	MOs	VE [eV]	λ [nm]	State	f
1,2NT-PT1	$H-3\rightarrow L+1$	5.64	220	S_{10}	0.00
	$H \rightarrow L+2$	5.62	221	S_9	0.21
	$H-1\rightarrow L+1$	5.35	232	S_8	0.58
	$H \rightarrow L+1$	4.91	252	S_7	0.31
	H-4→L	4.72	263	S_6	0.17
	H-2→L	4.26	291	S_5	0.09
	H-5→L	3.90	318	S_4	0.00
	H-1→L	3.81	325	S_3	0.03
	H-3→L	3.47	357	\mathbf{S}_2	0.00
	$H \rightarrow L$	3.36	369	$\tilde{S_1}$	0.20
1.9MA-PT1	H→L+5	5.01	247	S10	0.20
<i>y-</i>	H-5→L	4.90	253	So	0.11
	$H \rightarrow L+3$	4.74	262	S	0.00
	H-3→L	4.56	271	S ₇	0.00
	H-4→L	4 55	273	Sc	0.08
	H-1→L	4 11	301	S ₅	0.00
	$H \rightarrow I + 1$		-	S-	-
	H-6-J	3 77	320	S,	0.0
		3.74	321	54 Sa	0.01
	$\Pi \rightarrow L \pm 2$ $\Pi \uparrow \downarrow I$	5.74	551	53	0.01
	Π - $\Pi \rightarrow L$	2.45	- 250	53 S-	- 00
	$\Pi - 2 \rightarrow L$	5.45 2.79	339	52 S	0.00
1.014.072	$\Pi \rightarrow L$	2.78	249	51	0.23
1,9MA-P12	$H \rightarrow L+4$	4.99	248	S ₁₀	0.14
	H-4→L	4.90	255	59	0.10
	$H \rightarrow L+2$	4.//	260	58	0.00
	$H \rightarrow L+3$	-	-	58	-
	H-3→L	4.55	272	S ₇	0.06
	H-6→L	4.54	273	S_6	0.00
	$H \rightarrow L+1$	4.14	299	S_5	0.04
	H-2→L	3.76	330	S_4	0.02
	H-5→L	3.70	335	S_3	0.00
	H-1→L	3.19	388	S_2	0.00
	$H \rightarrow L$	2.82	440	S_1	0.27
1,2MA-PT1	H-5→L	4.90	253	S ₁₀	0.32
	$H \rightarrow L+5$	4.78	259	S_9	0.00
	$H \rightarrow L+2$	4.66	266	S_8	0.00
	$H \rightarrow L+3$	-	-	S_8	-
	H-4→L	4.47	277	S_7	0.08
	H-6→L	4.08	304	S_6	0.00
	$H \rightarrow L+1$	3.96	313	S_5	0.43
	H-2→L	-	-	S_5	-
	H-3→L	3.78	328	S_4	0.00
	H-2→L	3.58	346	S_3	0.01
	H-1→L	3.49	355	S ₂	0.00
	H→L	2.45	506	S_1	0.21
DA	H→L+3	4.39	282	S10	0.00
	H→L+7	-		S10	-
	H→L+6	4.37	284	So	0.04
	H-6→I	4.27	291	S	0.00
	H-3→I	3.97	313	S-7	0.00
	H→I ±?	3.84	324	Sc	0.00
		5.04	-	S	-
	H_{-1}	3.82	324	S.	0.00
	п- ч →L цо ч	3.03	345	5	0.00
	$\Pi - 2 \rightarrow L$ $\Pi \rightarrow 1 + 1$	2.39	242 279	54 S.	0.01
	$H \rightarrow L+I$	3.28	3/8	53	0.02
	H-1→L	2.84	436	S_2	0.00
	H→L	2.37	523	S_1	0.44

Fig. 2 Vibrational contributions to the $S_1 \leftarrow S_0$ electronic transition of the neutral (1,2NT-PT1, 1,2NT-PT9), monoanionic (1,9MA-PT1, 1,9MA-PT2, 1,2MA-PT1) and dianionic (DA) forms of alizarin in metanol solution. Spectra are shown in an energy scale relative to the transition origin (< 0|0 >) and most important vibronic contributions are marked by mode number.

Fig. 3 Normal modes related to the most important vibronic contributions (see figure 2) for neutral (1,2NT-PT1, 1,2NT-PT9), monoanionic (1,9MA-PT1, 1,9MA-PT2, 1,2MA-PT1) and dianionic (DA) forms of alizarin in methanol solution. Similarities between molecular vibrations for different systems are emphasised by caption colors.

Table 2 Most intense vibrational contributions to free Alizarin $S_1 \leftarrow S_0$ electronic transition. Energy and intensities of single vibronic contributions for neutral (1,2NTPT1, 1,2NTPT9), monoanionic (1,9MA-PT1, 1,9MA-PT2, 1,2MA-PT1) and dianionic (DA) forms of alizarin in metanol solution. The absolute energy of (<0|0>) transition and relative energies of the three most intense transition from funtamental state to the single overtones <0|n> Neutral (1,2NT-PT1)

Neutral (1,2N1-P11)				Neutral (1,2N1-P19)			
Transition	label	Energy [cm ⁻¹]	Intensity	Transition	label	Energy [cm ⁻¹]	Intensity
<0 0>	0	24 405	$0.3372*10^{7}$	<0 0>	0	19 773	$0.2015*10^{7}$
9 ¹	9	331	$0.1947*10^{7}$	6 ¹	6	201	$0.2439*10^7$
12 ¹	12	398	$0.4241*10^{6}$	9 ¹	9	311	$0.1084*10^{7}$
17 ¹	17	478	$0.1173*10^{7}$	6 ²	6^{2}	402	$0.1476*10^7$
54 ¹	54	1451	$0.7673*10^{6}$	8 ¹ ,6 ¹	8,6	478	$0.5654*10^{6}$
				58 ¹	58	1578	$0.5071*10^{6}$

Monoanion (1,9MA-PT1)				Monoanion (1,9MA-PT2)					
Transition	label	Energy [cm ⁻¹]	Intensity	Transition	label	Energy [cm ⁻¹]	Intensity		
<0 0>	0	20 340	$0.7498*10^7$	<0 0>	0	20 728	0.9805^{*7}		
61	6	194	0.1976*10 ⁷	13 ¹	13	402	$0.2172*10^{7}$		
9 ¹	9	331	$0.4865*10^7$	15 ¹	15	465	$0.2255*10^{7}$		
47 ¹	47	1304	0.2075*10 ⁷	46 ¹	46	1267	0.3134*10 ⁷		
54 ¹	54	1510	$0.1462*10^{7}$	56 ¹	56	1552	$0.2508*10^{7}$		
Monoanion (1,2MA-PT1)				Dianionic (DA)					
Transition	label	Energy [cm ⁻¹]	Intensity	Transition	label	Energy [cm ⁻¹]	Intensity		
<0 0>	0	17 833	0.9030*10 ⁷	<0 0>	0	17 643	0.3183* ⁸		
9 ¹	9	333	0.4763*10 ⁷	61	6	204	0.3030*7		
47 ¹	47	1303	$0.1978*10^7$	13 ¹	13	403	0.3999* ⁷		
50 ¹	50	1372	0.9661*10 ⁶	46 ¹	46	1295	0.8623^{*7}		
54 ¹	54	1520	$0.2084*10^{7}$	50^{1}	50	1430	0.5504^{*7}		
				50^{2}	50^{2}	2861	0.4725 * 6		

Fig. 4 Equilibrium structures of the Mg-Alizarin complexes in dioxane/water solution. 1-hydroxy-9-keto and 1,2-dihydroxyl Mg-Alizarin complexes with solvent described by CPCM model (1,9Mg-Aliz) or with *n* water molecules in solvation sphere $(1,2Mg(H_2O)_n, 1,9Mg(H_2O)_n)$. Both parallel and perpendicular (with respect to molecular plane) views are presented.

CAM-D5L1F/aug-IN	J/D//CFCIVI leve	i. Boliu lenguis ili A, ali	gies in degrees, ΔO in k.	J/11101			
Bond / Angle	[1,9Mg]	$[1,9Mg(H_2O)_2]$	$[1,9Mg(H_2O)_4]$	Bond/Angle	[1,2Mg]	$[1, 2Mg(H_2O)_2]$	$[1, 2Mg(H_2O)]$
C(9)=O(11)	1.271	1.263	1.255	C(9)=O(11)	1.251	1.246	1.244
C(1)=O(12)	1.316	1.308	1.302	C(1)=O(12)	1.383	1.380	1.372
C(2)=O(13)	1.344	1.346	1.346	C(2)=O(13)	1.325	1.315	1.308
C(10)=O(14)	1.218	1.219	1.220	C(10)=O(14)	1.218	1.219	1.221
O(12)-Mg	1.870	1.910	1.957	O(12)-H(15)	1.067	1.029	1.013
O(13)-H(16)	0.971	0.972	0.975	O(13)-Mg	1.888	1.918	1.971
O(11)-Mg	1.904	1.951	2.009	O(11)-H(15)	1.401	1.500	1.548
O(12)-H(16)	2.008	1.998	1.965	O(12)-Mg	1.973	2.026	2.102
O(11)-O(12)	2.784	2.747	2.744	O(11)-O(12)	2.404	2.452	2.479
O(12)-O(13)	2.588	2.593	2.578	O(12)-O(13)	2.669	2.636	2.632
C(9)-C(17)-C(1)	121.4	121.6	121.1	C(9)-C(17)-C(1)	118.7	119.1	119.2
O(11)-C(9)-C(17)	123.1	122.9	123.1	O(11)-C(9)-C(17)	119.2	119.7	120.1
C(17)-C(1)-O(12)	126.8	126.6	126.9	C(17)-C(1)-O(12)	120.2	121.0	121.5
C(2)-C(1)-O(12)	114.3	115.0	114.9	C(2)-C(1)-O(12)	116.8	115.8	115.4
C(1)-C(2)-O(13)	117.5	116.9	116.2	C(1)-C(2)-O(13)	118.7	118.3	118.5
O(11)-Mg-O(12)	95.1	90.7	87.5	O(11)-H(15)-O(12)	153.6	151.1	150.2
O(12)-H(16)-O(13)	116.2	117.3	118.6	O(12)-Mg-O(13)	87.4	83.8	80.4
Thermochemistry	[1,9Mg]	$[1,9Mg(H_2O)_2]$	$[1,9Mg(H_2O)_4]$	Thermochemistry	[1,2Mg]	$[1, 2Mg(H_2O)_2]$	$[1, 2Mg(H_2O)]$
ΔG (kJ/mol)	0	0	0	$\Delta G (\text{kJ/mol})$	29.4	21.4	25.2

Table 3 Ground state equilibrium structures and relative free energy values in dioxane/water solution, for the 1,9 and 1,2 Mg-Alizarin complexes with solvent described by the CPCM model (1,9Mg and 1,2Mg) or with and *n* water molecules in solvation sphere $(1,2Mg(H_2O)_n, 1,9Mg(H_2O)_n)$. All computations at the CAM-B3LYP/aug-N07D//CPCM level. Bond lengths in Å, angles in degrees. ΔG in kJ/mol

Fig. 5 Changes in electronic density during the HOMO \rightarrow LUMO transition in free lingand and complexed alizarin (1,9Mg and 1,2Mg forms) in ethanol/water solution, considering up to 4 explicit H₂O molecules. The regions, which have lost electron density as a result of transition, are shown in bright yellow, whereas the darker blue regions gained electron density. ELD densities evaluated with an isovalue threshold of 0.0004.

Fig. 6 Frontier molecular orbitals (plots with isovalue threshold of 0.02 and relative energy positions in a.u.) for Alizarin Mg-complexes (1,9Mg and 1,2Mg forms) in ethanol/water solution, considering up to 4 explicit H_2O molecules.

Fig. 7 Vibrationally resolved electronic spectra for complexed 1,9Mg-Alizarin in dioxane/water solution, considering effect of adding up to 4 water molecules.

Table 4 Excited state properties of 1,9 and 1,2 Mg-Alizarin complexes in dioxane/water solution, with solvent described by the CPCM model (1,9Mg and 1,2Mg) or with and 2 water molecules in solvation sphere (1,2Mg(H₂O)₂, 1,9Mg(H₂O)₂, computed at the TD-CAM-B3LYP/aug-N07D//CPCM level within the non-equilibrium solvation regime. Vertical excitation energies (VE) [eV], absorption wavelengths (λ [nm]), oscillator strengths (f) and dipole moment (μ [Debyee]) are reported along with the most important molecular orbitals (MOs) involved in the transitions. 1,2Mg Aliz

Band	MOs	VE [eV]	λ [nm]	State	μ^a [D]	f	Band	MOs	VE [eV]	λ [nm]	State	μ^d [D]	f
III	H-1 \rightarrow L+2	5.45	227	S ₁₂	20.78	0.26	III	H-5 \rightarrow L+1	5.37	231	S ₁₂	5.38	0.03
	H-6 \rightarrow L+1	5.42	228	S ₁₁	6.49	0.04		$H-1\rightarrow L+2$	5.26	236	S ₁₁	18.25	0.35
	$H-3\rightarrow L+2$	5.34	232	S ₁₀	16.76	0.00		$H-3\rightarrow L+2$	5.22	238	S_{10}	14.55	0.00
II	$H\rightarrow L+2$	4.84	256	S ₉	1.42	0.50		$H-1\rightarrow L+1$	4.89	253	S ₉	0.71	0.00
	$H-1\rightarrow L+1$	4.83	257	S ₈	23.40	0.00	II	$H-4\rightarrow L$	4.72	263	S ₈	19.65	0.23
	$H-4\rightarrow L$	4.62	268	S_7	19.91	0.35		$H-4\rightarrow L$	4.58	271	S_7	19.24	0.21
	H-5→L	4.25	292	S ₆	21.94	0.00		H-5→L	4.37	284	S ₆	20.57	0.00
	$H-2\rightarrow L$	4.04	307	S_5	15.72	0.13		$H-2\rightarrow L$	3.96	313	S_5	18.39	0.12
	H-1→L	3.78	328	S_4	19.86	0.17		$H \rightarrow L+1$	3.64	340	S_4	2.44	0.00
	$H \rightarrow L+1$	3.36	369	S_3	3.42	0.01		$H-1 \rightarrow L$	3.42	362	S_3	17.93	0.16
	H-3→L	3.31	374	S_2	16.66	0.00		H-3→L	3.19	388	S_2	14.70	0.00
Ι	$H \rightarrow L$	3.15	393	S_1	24.00	0.09	Ι	$H \rightarrow L$	2.81	441	S_1	18.53	0.17

^{*a*} Ground state Dipole moment = 19.55D

1,2Mg(H ₂ O) ₂							1,9Mg(H ₂ O) ₂							
Band	MOs	VE [eV]	λ [nm]	State	μ^{b} [D]	f	Band	MOs	VE [eV]	λ [nm]	State	μ^{e} [D]	f	
III	H-6→L	5.61	221	S ₁₁	30.53	0.00	III	H-7→L	5.65	219	S ₁₂	23.04	0.00	
	H→L+6	5.54	224	S ₁₁	20.63	0.44		$H\rightarrow L+4$	5.44	228	S ₁₁	20.99	0.46	
	$H-1\rightarrow L+2$	5.42	228	S_{10}	24.03	0.15		$H-3\rightarrow L+2$	5.28	235	S_{10}	17.00	0.02	
	$H-3\rightarrow L+2$	5.37	231	S ₉	19.58	0.00		$H-1\rightarrow L+2$	5.25	236	S ₉	21.29	0.43	
II	H-4→L	4.78	259	S ₈	24.48	0.38		$H \rightarrow L+1$	4.77	260	S ₈	4.33	0.00	
	$H \rightarrow L+1$	4.62	268	S ₇	6.12	0.05	II	H-4→L	4.74	261	S_7	20.79	0.25	
	$H \rightarrow L+2$	4.59	270	S ₆	22.39	0.41		$H\rightarrow L+2$	4.55	272	S ₆	23.08	0.14	
	H-2→L	4.13	300	S_5	18.17	0.12		H-5→L	4.23	293	S_5	23.15	0.00	
	H-5→L	4.12	301	S_4	24.32	0.00		H-2→L	4.11	302	S_4	20.70	0.12	
	H-1→L	3.82	324	S_3	22.80	0.13		H-1→L	3.51	354	S_3	20.40	0.11	
	H-3→L	3.36	369	S_2	19.31	0.00		H-3→L	3.26	380	S_2	17.31	0.00	
I	$H \rightarrow L$	3.09	401	S_1	26.74	0.11	Ι	$H \rightarrow L$	2.86	433	S_1	20.88	0.21	

^b Ground state Dipole moment = 22.07D

^e Ground state Dipole moment = 20.78D

^d Ground state Dipole moment = 18.40D

Fig. 8 Equilibrium structures of the neutral Alizarin with solvent described by mixed dicrete-continuum model, namely CPCM plus n=(1-4) water molecules in a solvation sphere.