Hydrogen and Halogen Bonds are Ruled by the Same Mechanisms

S.J.Grabowski

Electronic supplementary information

All results presented were obtained at MP2/6-311++G(d,p) level, QTAIM was applied to calculate charges as well as to localize bond critical points and to analyze their characteristics. s%, Pol, and E_{NBO} were obtained with the use of NBO method.

T1 diagnostic for all systems considered here suggests that the other configurations are not important (T1 < 0.01 for all systems)

20										
	НО	s%	Pol	E _{NBO}	Q(H)	V(H)	$ ho_{BCP}$	V _{BCP}	G _{BCP}	$ abla^2 ho_{BCP}$
	2.6	23.6	73.8	0.5	0.589	3.3	0.006	-0.003	0.004	0.019
	2.5	23.7	73.9	0.8	0.591	3.2	0.007	-0.004	0.005	0.024
	2.4	24.0	74.0	1.2	0.594	3.0	0.009	-0.005	0.006	0.030
	2.3	24.2	74.1	1.8	0.597	2.9	0.011	-0.007	0.008	0.038
	2.2	24.5	74.2	2.6	0.600	2.7	0.013	-0.009	0.011	0.049
	2.1	24.9	74.4	3.9	0.604	2.6	0.017	-0.012	0.014	0.063
	2	25.4	74.6	5.7	0.608	2.4	0.021	-0.016	0.018	0.081
	1.95*	25.7	74.7	6.9	0.611	2.3	0.023	-0.018	0.021	0.091
	1.9	25.9	74.8	8.4	0.613	2.2	0.026	-0.021	0.024	0.102
	1.8	26.6	75.0	12.2	0.618	2.0	0.033	-0.030	0.031	0.128
	1.7	27.3	75.3	17.7	0.624	1.8	0.042	-0.043	0.041	0.156
	**	23.0	72.9	-	0.567	3.5	-	-	-	

Table. Results for HOH...OH₂ water dimer

Designations:

* - for the energetic minimum of the complex

** - the parameters for the H₂O monomer not participating in intermolecular interactions

 $_{25}$ H...O – H...O distance (in Å)

s% - percentage contribution of s-character in O-atom orbital of the O-H proton donating bond Pol- polarization of the O-H proton donating bond (% at O-atom)

 E_{NBO} – energy corresponding to the $n_{\text{O}} \rightarrow \sigma^*_{\text{OH}}$ (in kcal/mol)

Q(H) – QTAIM charge of the H-atom of the proton donating OH bond (au)

 $_{30}$ V(H) - QTAIM volume of the H-atom of the proton donating OH bond (in Å³)

 ρ_{BCP} , V_{BCP} , G_{BCP} and $\nabla^2 \rho_{BCP} - QTAIM$ parameters (in au) corresponding to the intermolecular H...O bond critical point: the electron density at BCP, the potential electron energy density at BCP, the kinetic electron energy density at BCP and the laplacian of the electron density at BCP, respectively.

35

H…N	s%	Pol	E _{NBO}	Q(H)	V(H)	ρ_{BCP}	V _{BCP}	G _{BCP}	$ abla^2 ho_{ m BCP}$
2.7	26.2	74.4	2.3	0.533	3.7	0.007	-0.003	0.004	0.017
2.4	27.0	75.0	5.9	0.541	3.3	0.013	-0.006	0.007	0.031
2.1	28.3	75.8	14.6	0.550	2.9	0.023	-0.013	0.014	0.056
2	28.7	76.1	19.6	0.553	2.7	0.029	-0.019	0.017	0.065
1.9	29.1	76.5	26.1	0.557	2.5	0.036	-0.026	0.022	0.074
1.8	29.4	76.9	34.9	0.560	2.4	0.045	-0.037	0.028	0.080
1.7	29.6	77.3	46.7	0.564	2.2	0.057	-0.052	0.036	0.080
1.6	29.6	78.0	63.1	0.568	2.1	0.072	-0.071	0.045	0.070
1.58*	29.6	78.2	67.7	0.569	2.1	0.076	-0.077	0.047	0.066
1.5	29.3	78.9	86.9	0.571	2.0	0.092	-0.097	0.054	0.041
**	25.0	72.9	-	0.508	3.7	_	-	-	_

Table. Results for NH₄⁺...NH₃ complex

5 Designations:

20

25

30

35

* - for the energetic minimum of the complex

** - the parameters for the NH_4^+ monomer not participating in intermolecular interactions

H...N - H...N distance (in Å)

s% - percentage contribution of s-character in N-atom orbital of the N-H proton donating bond ¹⁰ Pol- polarization of the N-H proton donating bond (% at N-atom)

 E_{NBO} – energy corresponding to the $n_N \rightarrow \sigma^*_{NH}$ (in kcal/mol)

Q(H) – QTAIM charge of the H-atom of the proton donating NH bond (au)

V(H) - QTAIM volume of the H-atom of the proton donating NH bond (in $Å^3$)

 ρ_{BCP} , V_{BCP} , G_{BCP} and $\nabla^2 \rho_{BCP} - QTAIM$ parameters (in au) corresponding to the intermolecular H...N ¹⁵ bond critical point: the electron density at BCP, the potential electron energy density at BCP, the

kinetic electron energy density at BCP and the laplacian of the electron density at BCP, respectively.

C1N	s%	Pol	E _{NBO}	Q(Cl)	V(Cl)	$ ho_{ m BCP}$	V _{BCP}	G _{BCP}	$ abla^2 ho_{ m BCP}$
3.4	27.4	47.9	0.8	-0.056	30.5	0.006	-0.004	0.005	0.006
3.3	27.4	47.9	1.1	-0.054	30.4	0.007	-0.005	0.006	0.007
3.2	27.5	48.0	1.5	-0.052	30.2	0.009	-0.006	0.007	0.008
3.1	27.6	48.1	2.1	-0.050	30.0	0.011	-0.007	0.008	0.010
3.09*	27.6	48.1	2.2	-0.050	30.0	0.011	-0.007	0.009	0.010
3.05	27.6	48.1	2.4	-0.049	30.0	0.012	-0.008	0.009	0.010
3	27.7	48.1	2.8	-0.048	29.9	0.013	-0.009	0.010	0.012
2.9	27.8	48.2	3.6	-0.045	29.8	0.016	-0.011	0.013	0.014
2.8	28.0	48.4	4.7	-0.042	29.6	0.019	-0.014	0.016	0.017
2.7	28.1	48.5	6.2	-0.038	29.3	0.023	-0.018	0.019	0.021
**	26.6	47.0	-	-0.086	30.7	-	-	-	-

Table. Results for F₃CCl...NH₃ complex

⁵ Designations:

20

25

30

35

* - for the energetic minimum of the complex

** - the parameters for the F₃CCl monomer not participating in intermolecular interactions

Cl...N – Cl...N distance (in Å)

s% - percentage contribution of s-character in C-atom orbital of the C-Cl bond of the Lewis acid unit ¹⁰ Pol- polarization of the C-Cl bond (% at C-atom)

 E_{NBO} – energy corresponding to the $n_N \rightarrow \sigma^*_{CCI}$ (in kcal/mol)

Q(Cl) – QTAIM charge of the Cl-atom of the CCl bond (au)

V(Cl) - QTAIM volume of the Cl-atom of the CCl bond (in $Å^3$)

 ρ_{BCP} , V_{BCP} , G_{BCP} and $\nabla^2 \rho_{BCP}$ – QTAIM parameters (in au) corresponding to the intermolecular Cl...N ¹⁵ bond critical point: the electron density at BCP, the potential electron energy density at BCP, the

kinetic electron energy density at BCP and the laplacian of the electron density at BCP, respectively.

Cl0	s%	Pol	E _{NBO}	Q(Cl)	V(Cl)	ρ_{BCP}	V _{BCP}	G _{BCP}	$ abla^2 ho_{ m BCP}$
3	30.3	50.7	4.5	0.049	29.7	0.012	-0.008	0.009	0.039
2.9	30.5	50.8	5.5	0.054	29.4	0.014	-0.010	0.011	0.047
2.8	30.7	51.0	6.7	0.059	29.3	0.017	-0.012	0.013	0.057
2.7	30.9	51.2	8.5	0.063	29.2	0.021	-0.015	0.016	0.070
2.6	31.2	51.5	10.8	0.068	29.0	0.025	-0.019	0.020	0.088
2.5	31.4	51.8	14.0	0.071	28.7	0.031	-0.024	0.025	0.109
2.46*	31.6	51.9	15.7	0.072	28.7	0.034	-0.026	0.028	0.118
2.4	31.7	52.1	18.7	0.073	28.6	0.038	-0.030	0.032	0.134
2.3	32.0	52.6	25.4	0.073	28.5	0.048	-0.040	0.040	0.163
2.2	32.3	53.4	34.5	0.071	28.5	0.060	-0.053	0.051	0.195
**	26.6	47.0	-	-0.086	30.7	-	_	_	

Table. Results for F₃CCl...OH⁻ complex

Designations:

5

20

25

30

* - for the energetic minimum of the complex

** - the parameters for the F₃CCl monomer not participating in intermolecular interactions

Cl...O – Cl...O distance (in Å)

¹⁰ s% - percentage contribution of s-character in C-atom orbital of the C-Cl bond of the Lewis acid unit Pol- polarization of the C-Cl bond (% at C-atom)

 E_{NBO} – energy corresponding to the $n_{\text{O}} \rightarrow \sigma \ast_{\text{CCl}}$ (in kcal/mol)

Q(Cl) – QTAIM charge of the Cl-atom of the CCl bond (au)

V(Cl) - QTAIM volume of the Cl-atom of the CCl bond (in $Å^3$)

¹⁵ ρ_{BCP} , V_{BCP} , G_{BCP} and $\nabla^2 \rho_{BCP}$ – QTAIM parameters (in au) corresponding to the intermolecular C1...O bond critical point: the electron density at BCP, the potential electron energy density at BCP, the kinetic electron energy density at BCP and the laplacian of the electron density at BCP, respectively. Table. Results for HOH...OH₂ water dimer, DFT/NEDA terms of the interaction energy (in kcal/mol), CT/ES and PL/ES are the ratios of the energy contributions (see eq.4 in the main text).

НО	TOT	СТ	ES	PL	XC	DEF	CT/ES	PL/ES
1.7	-3.67	-20.09	-13.89	-5.07	-5.02	40.4	1.45	0.37
1.8	-4.52	-14.21	-11.4	-4.79	-4.05	29.93	1.25	0.42
1.9	-4.88	-10.1	-9.49	-4.33	-3.23	22.27	1.06	0.46
1.95	-4.95	-8.52	-8.68	-4.06	-2.87	19.18	0.98	0.47
2	-4.96	-7.19	-7.96	-3.79	-2.54	16.52	0.90	0.48
2.1	-4.84	-5.2	-6.8	-3.14	-1.97	12.27	0.76	0.46
2.2	-4.61	-3.76	-5.84	-2.63	-1.5	9.12	0.64	0.45
2.3	-4.32	-2.77	-5.07	-2.15	-1.14	6.81	0.55	0.42
2.4	-3.99	-2.08	-4.44	-1.75	-0.84	5.12	0.47	0.39
2.5	-3.67	-1.58	-3.92	-1.43	-0.62	3.88	0.40	0.36
2.6	-3.35	-1.23	-3.48	-1.18	-0.45	2.99	0.35	0.34

Table. Results for NH₄⁺...NH₃ complex, DFT/NEDA terms of the interaction energy (in kcal/mol), CT/ES and PL/ES are the ratios of the energy contributions (see eq.4 in the main ¹⁰ text).

HN	TOT	СТ	ES	PL	XC	DEF	CT/ES	PL/ES
1.5	-33.06	-85.6	-41.94	-1.8	-7.64	103.92	2.04	0.04
1.58	-30.87	-68.86	-37.96	-2.83	-6.57	85.35	1.81	0.07
1.6	-30.34	-64.66	-36.88	-3.11	-6.3	80.61	1.75	0.08
1.7	-28.59	-49.31	-32.55	-4.18	-5.23	62.68	1.51	0.13
1.8	-27.19	-37.82	-28.9	-4.94	-4.3	48.77	1.31	0.17
1.9	-25.86	-29.08	-25.85	-5.35	-3.54	37.96	1.12	0.21
2	-24.52	-22.37	-23.28	-5.44	-2.85	29.42	0.96	0.23
2.1	-23.18	-17.23	-21.11	-5.29	-2.25	22.7	0.82	0.25
2.4	-19.2	-8.07	-16.32	-4.14	-0.96	10.29	0.49	0.25
2.7	-15.7	-4.16	-13.14	-2.97	-0.32	4.89	0.32	0.23

5

Table. Results for F₃CCl...NH₃ complex, DFT/NEDA terms of the interaction energy (in kcal/mol), CT/ES and PL/ES are the ratios of the energy contributions (see eq.4 in the main text).

ClN	TOT	СТ	ES	PL	XC	DEF	CT/ES	PL/ES
2.7	-0.7	-10.88	-11.35	-30.6	-9.03	61.16	0.96	2.70
2.8	-1.35	-8.39	-8.93	-24.4	-7.17	47.54	0.94	2.73
2.9	-1.74	-6.53	-7.12	-19.17	-5.64	36.72	0.92	2.69
3	-1.92	-5.13	-5.72	-14.9	-4.41	28.24	0.90	2.60
3.05	-1.95	-4.55	-5.15	-13.09	-3.89	24.73	0.88	2.54
3.09	-1.96	-4.19	-4.78	-11.94	-3.55	22.5	0.88	2.50
3.1	-1.96	-4.05	-4.65	-11.48	-3.42	21.64	0.87	2.47
3.2	-1.92	-3.21	-3.81	-8.74	-2.62	16.46	0.84	2.29
3.3	-1.84	-2.56	-3.17	-6.66	-2	12.55	0.81	2.10
3.4	-1.73	-2.06	-2.66	-5.05	-1.51	9.55	0.77	1.90

Table. Results for F₃CCl...OH⁻ complex, DFT/NEDA terms of the interaction energy (in kcal/mol), CT/ES and PL/ES are the ratios of the energy contributions (see eq.4 in the main text).

		-						
Cl0	TOT	СТ	ES	PL	XC	DEF	CT/ES	PL/ES
2.2	-20.39	-56.06	-56.45	-89.01	-25.67	206.8	0.99	1.58
2.3	-20.39	-42.46	-45.21	-76.47	-21.23	164.98	0.94	1.69
2.4	-19.98	-32.41	-36.53	-65.48	-17.5	131.94	0.89	1.79
2.46	-19.59	-27.76	-32.41	-59.53	-15.56	115.67	0.86	1.84
2.5	-19.27	-25	-29.93	-55.65	-14.32	105.63	0.84	1.86
2.6	-18.37	-19.6	-25.06	-46.85	-11.69	84.83	0.78	1.87
2.7	-17.37	-15.61	-21.46	-38.93	-9.46	68.09	0.73	1.81
2.8	-16.29	-12.53	-18.52	-32.25	-7.63	54.64	0.68	1.74
2.9	-15.22	-10.22	-16.27	-26.5	-6.13	43.9	0.63	1.63

10

15

5

Table. The linear correlation coefficients for the relations between the binding energy (E_{bin} , in kcal/mol) or the electron density at H(X)...B BCP, ρ_{BCP} (in au) and the energy terms (kcal/mol) obtained within DFT/NEDA scheme.

Ebin vs \rightarrow	ТОТ	СТ	ES	PL	XC	DEF
H-bonds	1.00	0.98	0.99	0.69	0.97	1.00
X-bonds	1.00	0.97	0.98	0.99	1.00	0.99
$\rho BCP vs \rightarrow$	TOT	СТ	ES	PL	XC	DEF
H-bonds	0.98	0.99	0.96	0.57	0.92	0.97
X-bonds	1.00	0.99	1.00	0.98	1.00	1.00