Collision-induced dissociation

mechanisms of [Li(uracil)]⁺

Roberto Rodríguez-Fernández, Saulo A. Vázquez* and

Emilio Martínez-Núñez*

Departamento de Química Física and Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Intramolecular [Li(uracil)]⁺ potential energy surface (PES)

Figure 1 shows a contour plot for Li^+ orbiting around uracil calculated at the MP2(FC)/6-31+G(d) level of theory. The plot clearly shows the two minima at O4 (lower right corner, θ ~120°) and O2 (lower left corner θ ~0°) and the transition state connecting both (θ ~60°). The AM1 contour plot fails to describe the main features of the energy landscape. Therefore the AM1 Hamiltonian is reparametrized to fit MP2(FC)/6-31+G(d) calculations. The resulting AM1 Hamiltonian is termed AM1 with specific reaction parameters (SRP). Only the parameters for H, Li and O have been optimized in the fitting. In practice the following function is minimized using the general optimization program SUPOPT:

$$f = \sum_{i} (X_i - X_i^{target})^2 \,\omega_i \tag{1}$$

where X_i is a semiempirical molecular property of our system (an energy difference, the geometry of a stationary point or the frecuenies) and X_i^{target} is the corresponding target value, taken in our case from MP2(FC)/6-31+G(d) calculations. In our case we selected the energies for several values of R and θ (see Figure 1 and Table 1) and also some properties of the O4 and O2 minima (distances, angles and frequencies). The values of *X* in Table 1 correspond to the AM1-SRP optimized values. The AM1-SRP optimized parameters are collected in Table 2. Figure 1 shows how the reparametrized potential (AM1-SRP) nicely reproduces the MP2(FC)/6-31+G(d) features. Table 3 collects the energies of the main stationary points in the PES. Quite interestingly, the high energy isomer π and the transition state connecting O4 and O2 are also nicely reproduced by our AM1-SRP Hamiltonian, even though those structures are not included in the optimization procedure. Figure 2 compares the main geometrical features of the

stationary points of Table 1. Overall, the AM1-SRP potential seems to account for the most important details of the [Li(uracil)]⁺ PES.

LJ parameters for [Li(uracil)]⁺

The LJ paremters σ and ε of the ion, needed in eq 6, are obtained by fitting a LJ potential for the interaction between Xe and [Li(uracil)]⁺ to the intermolecular potential of Figure 3. In particular, for each distance between Xe and the center of mass of the cation a total of 10⁴ configurations are generated by randomly rotating the molecular over its Euler angles to obtain an average intermolecular potential between both species. Figure 4 shows both the averaged intermolecular potential (black line), and the fitted LJ potential (red line). The resulting LJ parameters are: $\varepsilon = 12.7$ kcal/mol and $\sigma = 5.6$ Å.

Once the LJ parameters are determined, the collision integral $\Omega^{(2,2)*}$, which is a function of the reduced temperature $T^* = k_B T/\varepsilon$, is approximated by:¹

$$\Omega^{(2,2)*} = (0.636 + 0.567 \log_{10} T^*)^{-1}$$
⁽²⁾

$$\Omega^{(2,2)*} = (0.697 + 0.518\log_{10}T^*)^{-1}$$
(3)

$$\Omega^{(2,2)*} = 1.161(T^*)^{-0.14874} + 0.525\exp(-0.773T^*) + 2.162\exp(-2.438T^*)$$
(4)

Equation (2) is accurate within $\pm 7\%$ in the range $0.3 \le T^* \le 500$, Eq. (3) within $\pm 2.5\%$ in the range $3 \le T^* \le 300$, and Eq. (4) within $\pm 0.16\%$ in the range $0.3 \le T^* \le 100$.

Tables

Property ^a	X	X^{target}	<i>(</i>);	
$D_{\rm e}$ of O4	49.1	48.9	1	
D_e of Q4	45.0	45.5	1	
$d_{1:04}$ in O4	1.803	1.755	100	
$d_{\text{Li-O2}} \text{ in } O2$	1 811	1 760	100	
$a_{\text{LI-O2}} \text{ in O2}$	171.8	171.9	0.5	
$a_{\text{Li-}04-c}$ in O2	174.3	173.8	0.5	
Freq(30th) of O4	3098	3100	0.01	
Freq(31st) of Q4	3206	3200	0.01	
Freq(32nd) of O4	3396	3400	0.01	
Freq(33th) of O4	3402	3400	0.01	
E(4.40)	42.5	42.0	1	
E(4,3,40)	43.3	41.7	1	
E(4.5.40)	44.4	42.1	1	
E(7.40)	47.3	47.1	1	
E(10.40)	48.7	49.0	1	
E(4.50)	53.8	53.9	1	
E(4 3 50)	50.2	50.2	1	
E(4.5,50)	49.6	49.1	1	
E(7.50)	47.9	48.0	1	
E(10.50)	48.6	49.0	1	
E(4.60)	56.2	57.0	1	
E(4360)	51.1	52.0	1	
E(4.5.60)	50.1	50.4	1	
E(7.60)	47.7	47.9	1	
E(10.60)	48.6	48.9	1	
E(4.70)	48.1	48.6	1	
E(4.3.70)	45.9	45.9	1	
E(4.5.70)	46.0	45.3	1	
E(7.70)	46.9	46.9	1	
E(10.70)	48.3	48.6	1	
E(4.80)	31.3	32.6	1	
E(4.3.80)	34.2	33.5	1	
E(4.5.80)	36.6	34.8	1	
E(7.80)	45.4	45.1	1	
E(10.80)	47.9	48.1	1	

Table 1 Molecular properties selected for the reparametrization of the AM1Hamiltonian.

^a D_e is the dissociation energy in kcal/mol, d is a distance in Å, a is an angle in degrees, Freq(ith) is the ith frequency in cm⁻¹ of the O4 minimum and $E(R,\theta)$ is an energy in kcal/mol (with respect to the O4 minimum) of a geometry defined by R (in Å), and θ (in degrees) defined in Figure 1.

Parameter	Atom	Value		
USS	Н	-11.481457		
ZS	Н	1.178108		
BETAS	Н	-6.060738		
GSS	Н	13.038821		
ALP	Н	2.920401		
USS	Li	-3.938666		
UPP	Li	-4.680952		
ZS	Li	0.732507		
ZP	Li	0.823119		
BETAS	Li	-1.124105		
BETAP	Li	-1.282833		
GSS	Li	12.136146		
GSP	Li	5.721065		
GPP	Li	5.626132		
GP2	Li	5.679185		
HSP	Li	0.859623		
ALP	Li	1.367705		
USS	0	-96.991556		
UPP	0	-80.094474		
ZS	0	3.108050		
ZP	0	2.549183		
BETAS	0	-29.014009		
BETAP	0	-29.202568		
GSS	0	15.258495		
GSP	0	13.592248		
GPP	0	16.023733		
GP2	0	13.051632		
HSP	0	0.997777		
ALP	0	4.428909		

Table 2 AM1-SRP optimized parameters

	MP2(full) ^a	MP2/6-31+G(d)	AM1-SRP	
O4	0.0	0.0	0.0	
O2	3.7	3.7	4.1	
π	33.3	31.6	28.9	
TSO4-O2 ^b		27.9	25.7	
$Uracil + Li^+$	49.6	48.9	49.1	

Table 3 Computed relative energies (in kcal/mol) of the main stationary points of the [Li(uracil)]⁺ system.

^aMP2(full)/6-311+G(2d,2p) single point calculations at the MP2(full)/6-31G(d) optimized geometries from Ref 2.^bTransition state connecting the O4 and O2 isomers.

	A	В	С	D	Ε	F
Xe -C1	14225.136326763011	2.534784794299	-595.354860105615	4.300798169912	20.837054930692	15.909242298820
Xe-N8	65267.206166058968	3.036664627121	-1178.783217068830	5.356774767287	78.400984924714	13.299375724666
Xe-C3	28869.129269651166	2.987026578069	-780.213411008639	4.945167018757	36.730449580161	12.220949526914
Xe-N7	54992.446161930595	2.943749381596	-1128.583812958915	5.220550671881	173.212717820843	15.460329297890
Xe-C5	40173.943171253064	3.205236625634	-2396.006874588727	6.364959823140	65.693209947712	17.478755638182
Xe-C6	37601.016309414132	2.834998911791	-954.551501973627	6.089746308211	56.451637348635	15.054894422453
Xe-02	58784.832871095336	3.153985773196	-1369.114309260721	6.346358237921	92.669704414842	18.552539345042
Xe-04	45122.725989321509	2.944286775850	-2398.571749983254	7.183988643345	88.763897703127	18.261930042678
Xe-Li9	54362.191175536944	3.266206089313	-1288.326114460758	4.577266713812	23.394275583071	20.902950099506
Xe-H10	46485.505146050207	4.131020705136	-626.047016823445	6.874171254661	54.815288232770	18.079875564055
Xe-H11	28641.730917767516	3.571226619510	-805.234291279628	6.652424207191	138.389284774963	11.721250644858
Xe-H12	28010.423724406181	3.645804241498	-597.215658990459	6.993947831541	253.366134682155	13.223735601755
Xe-H13	52490.150322087691	4.044681676497	-950.874063491422	6.557204711283	895.175847217096	16.716527622582

Table 4 Parameters for the two-body intermolecular potentials^a

Parameter A is given in kcal mol⁻¹, B in Å⁻¹, D and F are dimensionless. The units for C and E are such that the potential energy is in kcal mol⁻¹, with R in Å.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Figures

Figure 1. Contour plots for Li⁺ around uracil computed at the MP2/6-31+G(d), AM1 and AM1-

SRP levels of theory.

Figure 2. Stationary points found in our study for $[Li(uracil)]^+$ at the MP2/6-31+G(d) and AM1-SRP levels of theory. Distances are given in Å.

Figure 3. Analytical potential of eq 2 (solid lines) fitted to the RI-MP2(FC)/def2-QZVPP ab initio calculations (circles) for different orientations of Xe and [Li(uracil)]⁺.

Figure 4. Average intermolecular potential and fitted LJ intermolecular potential for different Xe---[Li(uracil)]+ distances.

References

- 1
- J. Troe, *J. Chem. Phys.*, 1977, 66, 4758. M. T. Rodgers and P. B. Armentrout, *J. Am. Chem. Soc.*, 2000, 122, 8548. 2