Electronic Supplementary Information

The Lifetime and Efficiency of Triplet–Triplet Fluorescence from the Excited State of a Trimethylenemethane Biradical Determined Using Transient Emission Spectroscopy on Two-color Two-laser Flash Photolysis

Yasunori Matsui,^a Daisuke Kawahara,^b Eisuke Ohta,^{a,c} and Hiroshi Ikeda^{a,c,*}

^a Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan,

^b Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan,

^c The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, Sakai, Osaka, Japan

1. Experimental.

1.1 General.

Melting points are obtained with a Yanako (MP-500) and reported uncorrected. Elemental analyses were performed by the Research and Analytical Center at Kanazawa University. ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz, respectively, on a Varian Mercury 300 spectrometer. Continuous wave irradiation was carried out at 20 ± 1 °C using a 70-W Rayonet lamp ($\lambda_{EX} = 350$ nm).

1.2 Materials and Solvents.

All solvents and chemicals were used without further purification unless otherwise noted. C_6H_6 , CH_2Cl_2 , and CCl_4 were dried and distilled from CaH_2 . THF and ether were purified by passing through GlassContour solvent dispensing systems. MCH was dried over MS4A.

2. General Procedures of Photoreactions

2.1 Trapping reaction of ³2c" with O₂ affording endoperoxide 3 and 1,4-dibenzoylbenzene 4.

An O₂-saturated CH₂Cl₂ (12.5 mL) containing **1c** (78 mg, 0.25 mmol) was irradiated through a Pyrex filter with Rayonet lamp (350 nm, 70 W) at room temperature for 3 h. After removal of the solvent, purification with preparative GPC (CHCl₃) afforded **3** (10%) and **4** (25%) with recovery of **1c** (31%).

2.2 Trapping reaction of ³2c" with TCNE affording adducts 5 and 6.

An Ar-saturated CH_2Cl_2 (12.5 mL) containing 1c (78 mg, 0.25 mmol) and TCNE (64 mg, 0.5 mmol) was irradiated through a Pyrex filter with Rayonet lamp (350 nm, 80 W) at room temperature for 2 h. After removal of the solvents, purification with silica-gel column chromatography (*n*-hexane/EtOAc) followed by preparative GPC afforded 5 (56 mg, 52%) and 6 (33 mg, 31%).

3. The Detail of Kinetic Analyses

3.1. Kinetic analysis of ring-closing process of ³2c".

A CCl₄ solution containing **1c** (1 mM) was degassed by repeating four freeze (77 K)–pump (10^{-1} mmHg)–thaw (ambient temperature) cycles and sealed at 10^{-1} mmHg at 77 K. Time-dependent change of absorption at 360 nm was traced at 253, 263, 273, 283, and 293 K upon LFP (Table S1). An Arrhenius plot analysis was carried out with eq S1. As a result, $E_a = 2.9$ kcal mol⁻¹ and $A = 5.0 \times 10^7$ were obtained

$$\ln k_{\rm FN} = -\frac{E_{\rm a}}{RT} + \ln A \qquad (S1)$$

Tuble ST Rate Constant for Beeug (NDE) of Te					
Temperature / K	$k_{\rm DE} / 10^4 \ { m s}^{-1}$				
253.0	3.34				
263.0	4.56				
273.0	5.68				
283.0	7.18				
293.0	9.54				

Table S1. Rate Constant for Decay (k_{DE}) of ³2c^{••}

4. The Results of Quantum Chemical Calculations

Table S2. The Cartesian Coordinates (in Å) of 1c Optimized by B3LYP/cc-pVDZ. (The sum of electronic and zero-point energies is -962.186159 Hartree. $\langle S^2 \rangle =$ 0.0000)

0.0000)					Atom	Coordinates		
Atom -	N/	Coordinates	7	Atom	Х	Y	Z	
	X	Y	L		С	3.274004	-2.048582	0.796989
C	-3.490408	-0.307441	-0.091140		С	3.060891	-1.288420	2.031379
C	-2.659990	0.917044	0.232785		С	2.660212	-0.705175	0.640851
C	-3.007918	2.217494	-0.393511		С	3.655258	-3.176862	0.216658
С	-3.384247	2.056078	1.013228		С	3.503484	0.439921	0.118909
С	-1.194670	0.657320	0.501287		Н	3.923240	-0.820760	2.515414
Н	-4.433481	1.868538	1.258551		С	1.196681	-0.665778	0.273783
Н	-2.831094	2.619308	1.770151		Н	2.269654	-1.610669	2.714930
С	-2.920967	3.000654	-1.458484		Н	4.051056	-4.009338	0.804269
Н	-2.447657	2.654053	-2.380535		Н	3.581320	-3.312704	-0.865173
Н	-3.317483	4.019192	-1.445698		С	0.181048	-0.459658	1.227336
С	-0.412069	0.058049	-0.499819		C	0.812332	-0.832233	-1.070856
С	-0.578974	0.979432	1.720184		C	-0.519834	-0.791257	-1.451757
С	0.774564	0.721619	1.927843		Č	-1.160368	-0.431215	0.867891
С	0.946566	-0.181153	-0.303735		Ċ	-1.547667	-0.569610	-0.490438
С	1.563600	0.157071	0.913690		Н	1 582532	-0 982740	-1 830271
Н	-1.167074	1.423568	2.524514		Н	-0 794741	-0.902781	-2 500559
Н	1.245170	0.948280	2.885022		Н	0 448941	-0.329053	2.277409
Н	-0.879513	-0.231178	-1.443005		Н	-1 922051	-0.315963	1 638962
Н	1.523214	-0.661760	-1.094553		C	-2 932785	-0.575344	-0.909422
С	3.001442	-0.139776	1.227376		C	4 808412	0.238619	-0 355439
С	-4.396062	-0.325601	-1.161187		C	2 990748	1 748453	0.128424
С	-3.375152	-1.456410	0.710345		C	3 763984	2 822862	-0.313289
С	-4.149084	-2.587729	0.451301		C	5 583830	1 315403	-0.795335
С	-5.173663	-1.459121	-1.419384		C	5.066073	2 611875	-0.776673
С	-5.053677	-2.593803	-0.615553		н	1 973986	1 925258	0 483440
Н	-2.669239	-1.462631	1.543049		н	3 345617	3 831530	-0.296557
Н	-4.045301	-3.470224	1.086095		н	5 218839	-0 771786	-0.383237
Н	-4.492574	0.555577	-1.796945		н	6 596718	1 135263	-1 161901
Н	-5.872431	-1.453675	-2.258657		Н	5 669864	3 452164	-1.124910
Н	-5.657925	-3.479963	-0.819419		0	-3.175044	-1.252308	-2 024597
Ο	3.343408	-0.327040	2.387973		C	-4 085001	0.030824	-0.273637
С	4.028199	-0.210657	0.131206		C	-3 974843	1 169742	0.566087
С	3.944461	0.541512	-1.052375		C	-5 384468	_0 475859	-0.550604
С	5.164939	-1.007014	0.354057		C	6 500020	0.110568	0.018325
С	6.177600	-1.079028	-0.599797		C	5 107933	1 734432	1 138748
С	4.970792	0.484648	-1.998809		C	6 383726	1.734432	0.872240
С	6.082471	-0.332378	-1.779882		н	-5.483065	_1 348873	_1 195918
Н	5.232215	-1.561972	1.290244		н	-7.407747	-0.301740	_0 197820
Н	7.048772	-1.712742	-0.422508		Н		1 615540	0 745863
Н	3.089400	1.196028	-1.223839		н	-2.790522	2 604415	1 700202
Н	4.902227	1.083728	-2.908900		н	-5.001303 -7.268174	2.004413	1.790292
Н	6.879003	-0.382669	-2.525109		11	-7.200174	1.00/401	1.5214/5

Table S3. The Cartesian Coordinates (in Å) of ³1c Optimized by UB3LYP/cc-pVDZ. (The sum of electronic and zero-point energies is -962.088548 Hartree. $<S^2 > = 2.0003$)

Coordinates

Table S4. The Cartesian Coordinates (in Å) of ${}^{3}2c^{"}$ Optimized by UB3LYP/cc–pVDZ. (The sum of electronic and zero–point energies is -962.168700 Hartree. $\langle S^{2} \rangle = 2.0517$)

Atom	Coordinates			A 4		Coordinates
	Х	Y	Ζ	Atom	Х	Y
С	-3.938871	2.739601	0.625645	С	-3.308097	2.907992
С	-2.910880	2.236595	-0.190948	С	-2.781603	2.181315
Н	-4.438534	2.117033	1.366270	Н	-3.502365	2.438302
Н	-4.243459	3.784381	0.543093	Н	-3.536413	3.970580
С	-2.526790	0.819282	-0.105176	С	-2.484003	0.719109
С	-2.261173	3.096049	-1.094350	С	-2.528851	2.765700
Н	-2.533687	4.151961	-1.138883	Н	-2.738960	3.824390
Н	-1.499980	2.734403	-1.784072	Н	-2.120222	2.185258
С	-3.550522	-0.196850	0.175231	С	-3.601565	-0.167229
С	-1.136767	0.415941	-0.297992	С	-1.115749	0.271472
С	-0.058463	1.249516	0.092854	С	-0.032599	1.176469
С	-0.803063	-0.832844	-0.887419	С	-0.775226	-1.068111
С	0.516732	-1.210940	-1.079576	С	0.543664	-1.466725
С	1.264135	0.852132	-0.070762	С	1.288271	0.760946
С	1.578765	-0.388715	-0.655686	С	1.607215	-0.572931
Н	-1.603337	-1.490817	-1.227139	Н	-1.569515	-1.781491
Н	0.759182	-2.153154	-1.571991	Н	0.788456	-2.483686
Н	-0.271365	2.213898	0.554183	Н	-0.245809	2.216611
Н	2.061725	1.526680	0.241836	Н	2.084116	1.491274
С	2.975991	-0.845971	-0.941543	С	3.001926	-1.071942
С	-4.857998	-0.088889	-0.356032	С	-4.911975	0.148575
С	-3.267365	-1.321433	0.986533	С	-3.448723	-1.343384
С	-4.240495	-2.282046	1.254166	С	-4.536492	-2.160557
С	-5.825437	-1.056749	-0.094588	С	-5.992688	-0.679295
С	-5.524656	-2.158271	0.713597	С	-5.814720	-1.840905
Н	-2.275040	-1.423163	1.427548	Н	-2.469374	-1.590786
Н	-3.996659	-3.131597	1.895429	Н	-4.387922	-3.050439
Н	-5.101598	0.756726	-1.000050	Н	-5.067321	1.047268
Н	-6.821260	-0.954568	-0.530878	Н	-6.985206	-0.416957
Н	-6.284749	-2.913987	0.920455	Н	-6.664976	-2.485300
0	3.182424	-1.631638	-1.859267	О	3.201599	-2.046017
С	4.133091	-0.352774	-0.117067	С	4.170026	-0.390382
С	4.023068	-0.020510	1.243470	С	4.091655	0.226762
С	5.399106	-0.316495	-0.726748	С	5.415700	-0.461224
С	6.522918	0.077811	-0.004050	С	6.548910	0.105416
С	5.154461	0.354232	1.972773	С	5.233073	0.775907
С	6.403036	0.414261	1.349252	С	6.459998	0.726226
Н	5.477067	-0.607650	-1.774665	Н	5.470711	-0.971710
Н	7.498580	0.116043	-0.492565	Н	7.507979	0.057585
Н	3.056491	-0.083072	1.744311	Н	3.142746	0.253262
Н	5.059686	0.596548	3.033073	Н	5.163263	1.240771
Н	7.284610	0.715847	1.918674	Н	7.349152	1.163985

Table S5. The Cartesian Coordinates (in Å) of ${}^{1}2c^{"}$ Optimized by UB3LYP/cc–pVDZ. (The sum of electronic and zero–point energies is -962.163757 Hartree. $\langle S^{2} \rangle = 0.4504$)

Ζ

0.721141

-0.345534

1.685432

0.611238

-0.153251

-1.585063

-1.753733

-2.412316

0.145864

-0.273481

-0.090338

-0.625009

-0.756275

-0.190436

-0.513365

-0.842480

-1.064357

0.154486

-0.042235

-0.719163

-0.299037

0.925901

1.221100

-0.010704

0.749593

1.335070

1.836300

-0.896230

-0.382851

0.980239

-1.437064

-0.060198

1.199400

-0.707385

-0.127826

1.789379

1.123365

-1.669358

-0.647405

1.736079

2.774776

1.581786

(end)