Electronic Supplementary Information (ESI) for

Thermal evaporation-induced anhydrous synthesis of Fe₃O₄graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries

Yucheng Dong,^{a,b} Ruguang Ma,^b Mingjun Hu,^b Hua Cheng,^b Qingdan Yang,^{a,b} Yang Yang Li,^a Juan Antonio Zapien^{a,b*}

^aDepartment of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, PR China

^bCenter of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, PR China

*Corresponding author. Tel: +852 34427823. E-mail address: apjazs@cityu.edu.hk (J.A. Zapien).

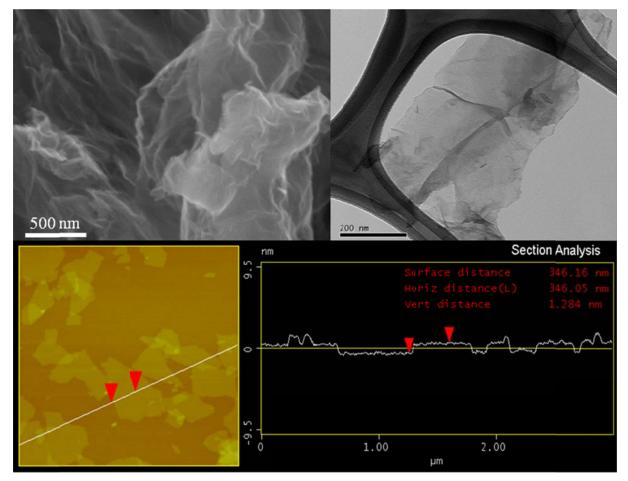


Fig. S1 SEM, TEM and AFM images of GO.

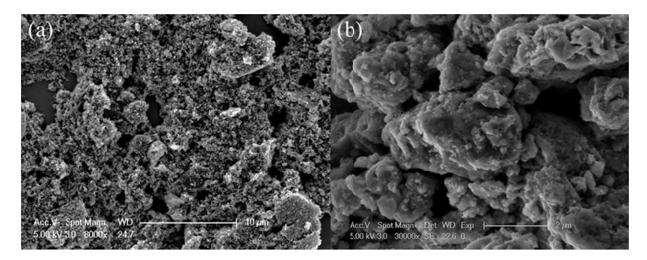


Fig. S2 SEM images of Fe₃O₄-graphene composite with different magnification.

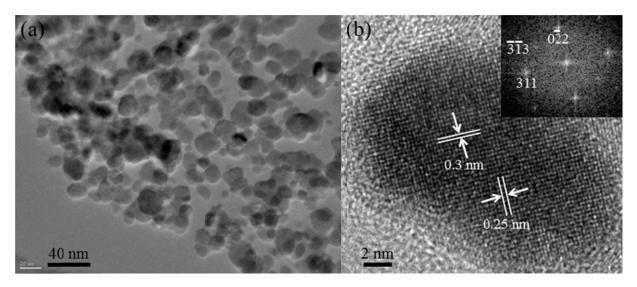


Fig. S3 TEM (a) and HRTEM (b) image of Fe_3O_4 . The corresponding Fourier transform of the high-resolution image is shown in the inset of (b).

The TEM image of Fe_3O_4 in Fig. S3 (a) revealed the size distribution of these particles to be in the 5 to 20 nm. The HRTEM image of an individual Fe_3O_4 nanoparticle is shown in Fig S3 (b) and the inset shows the corresponding Fourier transform image. The lattice spacing are 0.3 and 0.25 nm which are in good agreement with the d-spacing of ($\overline{022}$) and (311) planes, respectively.