Benzene and hydrogen adsorption on binary Pt₃M alloys and surface alloys: a DFT study

Supporting Information

Maarten K. Sabbe, Lucia Laín, Marie-Françoise Reyniers* en Guy B. Marin

Laboratorium voor Chemische Technologie, Universiteit Gent, Krijgslaan 281 S5, B-9000

Gent, Belgium

Table S1 Comparison of 4- and 5-layered slabs for Pt₃Cu and Pt₃Pd bulk alloys: Surface antisegregation energies $\Delta E_{antiseg}$ (eV) for empty surfaces and for surfaces with benzene adsorbed at the most stable site ($\Delta E_{antiseg}^{ads}$), calculated in a 4x4 unit cell and expressed per (anti)segregating solute atom M.

Non-	Restructured	ΔE_{and}	tiseg (eV)	$\Delta E_{antiseg}^{ads}(\mathrm{eV})$			
alloys	alloys	4 layers	5 layers	4 layers	5 layers		
Bulk alloys	M antisegregation						
Pt ₃ Cu	Pt/PtCu/Pt ₃ Cu	-0.16	-0.17	-0.07	-0.10		
Pt ₃ Pd	Pt/PtPd/Pt ₃ Pd	-0.03	-0.02	-0.02	-0.02		

Table S2: Comparison of 4-	and 5-layered slabs for	c Pt ₃ Cu and Pt ₃ Pd	bulk alloys: Benzene
adsorption energies.			

Allow	Adsorption	$E_{ m ads}$	(eV)
Alloy	site	4 layers	5 layers
Non-segregated			
Pt ₃ Cu	Pt ₃ -hcp ⁰	-0.89	-0.86
Pt ₃ Pd	Pt ₂ -bri ³⁰ -M	-1.20	-1.32
Antisegregated			
Pt/PtCu/Pt ₃ Cu	hcp-M ⁰ -Pt ₂ M	-0.36	-0.35
	$bri\text{-}M\text{-}Pt_2M/fcc\text{-}PtM_2$	-0.53	-0.56
Pt/PtPd/Pt ₃ Pd	$bri-M-Pt_2M/fcc-PtM_2$	-1.16	-1.31

Figure S1: Calculated electron potential along the z-axis of a unit cell, averaged out over the x and y coordinates, with indication of the dipole layer and the vacuum energy (benzene adsorbed on 4-layered Pt(111)).

The benzene-surface distances on Pt_3M/Pt surface alloys, are with 202.1 to 205.3 pm very similar to the distance of 203.3 pm on Pt(111). For bulk alloys, benzene-surface distances are larger than for the surface alloys and for Pt(111), about 210-214 pm for antisegregated $Pt/PtM/Pt_3M$ compared to 203-205 pm on surface alloys, related to the weaker adsorption energies of benzene on bulk alloys. The largest distances, in the range of 300 pm, are clearly observed on the Au/Pt and Ag/Pt alloys, confirming benzene only physisorbs on these. Non-segregated $Pt_3Pd(111)$ has both a similar adsorption energy and d(Pt-B) distance to pure Pt. The distance between the first layer and the second layer d(1,2) is very similar for most alloys, about 230 pm, only for the antisegregated alloys the distance is shorter by about 5 %, while the Ag and Au monolayer on Pt(111) have a significantly larger separation between the 2 top layers (237 to 241 pm).

Table S3 Optimized FCC lattice constants *a* compared to experimentally observed lattice constants and those obtained by Ma and Balbuena 47 (Å).

2	Bulk allovs	Experimen tal	Ma ^a	This work
	Pť	3.920 ^b	3.970	4.011
]	Pt ₃ Fe	3.900 ^c	3.906	3.923
I	Pt ₃ Co	3.831 ^e	3.889	3.880
]	Pt ₃ Ni	3.841 ^d	3.880	3.889
I	Pt ₃ Cu	3.860 ^f	3.903	3.911
]	Pt ₃ Pd	3.916 ^g	3.961	3.975
I	Pt ₃ Ag	-	4.002	4.013
I	Pt ₃ Au	-	4.019	4.027

Table S4 Distances (pm) between the center of the benzene molecule and the first layer (d(Pt-B)), with benzene adsorbed at the preferred site, and between the top and the second layer (d(1,2)) in the non-covered alloys, on the most stable Pt₃M/Pt surface and Pt₃M bulk alloys. For d(Pt-z), the position of the first layer is determined by the center of the atoms to which benzene is bound.

Surface alloys	C ₆ H ₆ site	d (Pt-z) pm	d(1,2) pm	Bulk alloys	C ₆ H ₆ site	<i>d</i>(Pt-B) pm	d(1,2) pm
Pt/Pt ₃ Fe/Pt	bri-M ³⁰	205.3	224.1	Pt/PtFe/Pt ₃ Fe	bri-M- Pt ₃ /fcc-PtM ₂	213.7	224.8
Pt/Pt ₃ Co/Pt	bri-M ³⁰	205.1	224.0	Pt/PtCo/Pt ₃ Co	bri-M-	213.2	225.6

$Pt_3/fcc-PtM_2$ bri-M³⁰ Pt/Pt₃Ni/Pt 204.5 224.0 Pt/PtNi/Pt₃Ni bri-M-211.3 225.7 Pt₃/fcc-PtM₂ bri-M³⁰ Pt/Pt₃Cu/Pt 204.5 224.4 Pt/PtCu/Pt₃Cu bri-M-210.2 224.9 $Pt_3/fcc-PtM_2$ Pt₃-hcp⁰ Pt₂-bri³⁰-M Pt₃Pd/Pt 202.1 229.2 Pt₃Pd 206.4 230.8 Pt₃Ag/Pt Pt₃-hcp⁰ 294.6 203.1 231.7 Ag/Pt Bri 237.8 Pt₃-hcp⁰ bri Pt₃Au/Pt 204.4 233.1 Au/Pt 309.9 241.4 Pt₃-hcp⁰ Pt (111) 203.3 229.9 Pt (111) bri 203.9 229.9

Table S5: C-C bond distances (Å), orthogonal distance between the carbon and hydrogen plane (Å) and the off-planarity angles of the C-H bonds with the surface plane (degrees). The orthogonal distance between the carbon and hydrogen plane is calculated as the difference between the average z-coordinate of the C atoms and that of the H atoms.

Alloy	site	C-C	bond d	istances	s (Å)			C-H plane (Å)	Ang	le of C pla	-H bor ane (de	nds wit egrees)	th surfa :	ace
surface alloys –	non-seg	gregate	$ed(Pt_3-$	fcc site	?)									
Pt ₃ Fe/Pt		1.436	1.436	1.436	1.467	1.467	1.467	0.379	19.7	20.0	20.0	20.4	21.1	21.1
Pt ₃ Co/Pt		1.436	1.436	1.436	1.466	1.466	1.466	0.372	19.1	19.4	19.5	20.0	20.8	20.8
Pt ₃ Ni/Pt		1.436	1.436	1.437	1.465	1.465	1.466	0.366	18.7	18.9	19.2	19.6	20.6	20.6
Pt ₃ Cu/Pt		1.435	1.435	1.436	1.465	1.465	1.466	0.373	19.1	19.4	19.6	20.1	21.0	21.0
Pt ₃ Pd/Pt		1.436	1.436	1.437	1.463	1.464	1.465	0.372	19.1	19.2	19.4	19.8	21.0	21.1
Pt ₃ Ag/Pt		1.433	1.433	1.433	1.464	1.465	1.465	0.383	19.6	19.9	19.9	20.5	21.6	21.7
Pt ₃ Au/Pt		1.429	1.430	1.430	1.464	1.465	1.465	0.366	18.7	19.0	19.2	19.4	20.6	20.8
surface alloys - an	ıtisegreg	gated (b	ori-M ³⁰ s	site)										
Pt/Pt ₃ Fe/Pt		1.430	1.430	1.466	1.468	1.470	1.470	0.415	16.2	16.9	17.7	19.2		32.0
Pt/Pt ₃ Co/Pt		1.430	1.431	1.467	1.468	1.470	1.470	0.417	16.3	17.0	17.7	19.3		32.2
Pt/Pt ₃ Ni/Pt		1.431	1.431	1.467	1.469	1.471	1.471	0.417	16.3	17.1	17.3	19.0	32.5	33.5
Pt/Pt ₃ Cu/Pt		1.431	1.431	1.467	1.468	1.470	1.470	0.416	16.2	16.8	17.7	19.2		32.8
Pt/Pt ₃ Pd/Pt		1.433	1.434	1.469	1.470	1.472	1.472	0.427	16.9	17.4	17.7	19.2		34.5
Pt/Pt ₃ Ag/Pt		1.432	1.432	1.467	1.468	1.471	1.471	0.426	16.9	17.6	17.7	19.5		34.3
Pt/Pt ₃ Au/Pt		1.433	1.434	1.469	1.470	1.472	1.472	0.432	17.4	17.8	18.1	19.6	33.5	34.7

bulk alloys – **non-segregated** (Pt_3 - hcp^0 site)

Pt ₃ Fe		1.431	1.432	1.433	1.462	1.463	1.463	0.363	18.1	18.6	18.7	19.5	20.7	21.0
Pt ₃ Co		1.431	1.433	1.433	1.461	1.462	1.462	0.343	16.3	16.6	18.1	19.2	19.5	20.3
Pt ₃ Ni		1.433	1.433	1.434	1.460	1.461	1.462	0.333	17.2	17.2	17.3	17.6	18.5	18.8
Pt ₃ Cu		1.430	1.430	1.431	1.458	1.458	1.459	0.326	16.3	16.4	17.3	17.8	18.2	18.5
Pt ₃ Pd		1.435	1.436	1.437	1.461	1.462	1.465	0.372	17.2	18.2	18.6	20.5	22.4	22.9
Pt ₃ Ag		1.431	1.432	1.432	1.459	1.460	1.461	0.371	18.2	18.8	19.5	20.2	21.3	21.5
Pt ₃ Au		1.430	1.430	1.431	1.462	1.463	1.464	0.361	17.2	18.2	18.2	19.6	21.3	21.7
bulk alloys – anti	isegregat	ted (bri-	$-M-Pt_2$	M/fcc-l	PtM ₂ si	te)								
Pt/PtFe/Pt ₃ Fe		1.419	1.430	1.452	1.458	1.458	1.460	0.366	14.3	14.5	15.6	17.3	27.7	28.9
Pt/PtCo/Pt ₃ Co		1.421	1.432	1.456	1.459	1.461	1.463	0.367	14.0	14.5	14.9	16.3	29.4	29.7
Pt/PtNi/Pt ₃ Ni		1.424	1.433	1.458	1.463	1.464	1.466	0.382	13.9	15.2	16.7	16.9	28.1	33.3
Pt/PtCu/Pt ₃ Cu		1.424	1.435	1.458	1.461	1.463	1.464	0.381	14.0	15.9	16.2	16.6	29.5	31.2
Pt/PdPd/Pt ₃ Pd		1.432	1.434	1.468	1.469	1.473	1.473	0.431	17.0	17.4	18.7	19.9	32.4	35.2
Pt/PtAg/Pt ₃ Ag		1.429	1.436	1.462	1.468	1.469	1.470	0.435	16.3	18.2	19.5	21.7	32.1	34.1
Pt/PtAu/Pt ₃ Au		1.432	1.436	1.467	1.471	1.472	1.473	0.439	16.3	17.0	20.3	21.4	33.4	35.1
bulk alloys - ful	lly segre	gated (site inc	licated)									
Pd/Pt	bridge	1.429	1.429	1.447	1.447	1.448	1.448	0.342	14.8	15.2	16.1	16.2	23.5	23.9
Ag/Pt	fcc	1.398	1.398	1.398	1.402	1.402	1.403	0.000	0.0	0.0	0.0	0.1	0.5	0.6
Au/Pt	fcc	1.397	1.398	1.398	1.401	1.401	1.402	-0.006	0.0	0.0	0.0	0.0	0.0	0.1

Figure S2: Benzene adsorption energies on the bri- M^{30} site of antisegregated surface alloys (Pt/Pt₃M/Pt₃M), vs. (clockwise from top left) the d-band center, density at the Fermi level, work function and width at quarter height, with indication of the solute atom M. The R² values for the linear regressions are resp. 0.95, 0.76, 0.86 and 0.88. Dotted line in work function is logarithmic fit $E_{ads} = 44 + 111*\log(\phi + 5.83)$.

Table S6: d-band centers (eV) and DOS at Fermi level (for 4x4 unit cells) for all alloys studied in this work, compared to literature values. Apart from ref. [1], the referred d-band centers are approximate since they have been read from graphs in the respective papers.

	Full to	Only Pt atoms in			Reference d-band centers		
_	DOS of		top	layer DOS at			
	Ec-Ef	Ef	Ec-Ef	Ef			
Pt(111)	-2.40	27.17	-2.40	27.17	-2.44 (calculated [1])		
Surface alloys							
non-segregated							
Pt ₃ Fe/Pt	-2.49	18.73	-2.42	15.29			
Pt ₃ Co/Pt	-2.32	27.43	-2.40	16.91			
Pt ₃ Ni/Pt	-2.06	41.85	-2.37	23.90			
Pt ₃ Cu/Pt	-2.13	21.69	-2.30	19.40			
Pt ₃ Pd/Pt	-2.26	28.50	-2.36	21.80			
Pt ₃ Ag/Pt	-2.62	20.12	-2.35	19.14			
Pt ₃ Au/Pt	-2.60	22.50	-2.38	20.49			
antisegregated							
Pt/Pt ₃ Fe/Pt	-2.52	22.48	-2.52	22.48			
Pt/Pt ₃ Co/Pt	-2.50	23.10	-2.50	23.10			
Pt/Pt ₃ Ni/Pt	-2.45	27.28	-2.45	27.28			
Pt/Pt ₃ Cu/Pt	-2.44	21.33	-2.44	21.33			
Pt/Pt ₃ Pd/Pt	-2.37	28.35	-2.37	28.35			
Pt/Pt ₃ Ag/Pt	-2.32	21.96	-2.32	21.96			
Pt/Pt ₃ Au/Pt	-2.33	24.00	-2.33	24.00			
Bulk alloys							
non-segregated							
Pt3Fe	-2.69	13.34	-2.67	9.23			
Pt3Co	-2.50	25.27	-2.67	12.39			
Pt3Ni	-2.26	27.45	-2.56	16.14			
Pt3Cu	-2.30	11.74	-2.47	10.87			
Pt3Pd	-2.25	28.34	-2.35	21.24			
Pt3Ag	-2.57	12.37	-2.25	11.92			
Pt3Au	-2.49	15.95	-2.25	14.90			
<i>restructured</i> Pt/PtFe/Pt3Fe	-2.75	12.00	-2.75	12.00	-3.05 (measured on annealed surface) [2]		

					-2.82 (calculated) [2]
					-2.84 (calculated for Pt/Fe/Pt) [1]
					-2.8 (calculated for Pt/Fe) [3]
Pt/PtCo/Pt3Co	-2.73	11.85	-2.73	11.85	-2.85 (measured on annealed
					surface) [2]
					-2.73 (calculated) [2]
					-2.74 (calculated for Pt/Fe/Pt [1])
					-2.7 (calculated for Pt/Fe) [3]
Pt/PtNi/Pt3Ni	-2.66	16.80	-2.66	16.80	-2.65 (measured on annealed
					surface) [2]
					-2.60(calculated) [2]
					-2.60 (calculated for Pt/Fe/Pt [1])
$D_{t}/D_{t}C_{y}/D_{t}2C_{y}$	2.52	16 20	2.52	16 20	-2.38 (calculated for Pt/Fe) [5]
PI/PICU/PI3Cu	-2.52	10.20	-2.52	10.20	
Pt/PdPd/Pt3Pd	-2.37	29.85	-2.37	29.85	
Pt/PtAg/Pt3Ag	-2.24	15.55	-2.25	15.55	
Pt/PtAu/Pt3Au	-2.25	19.89	-2.24	19.89	
Segregated					
Au/Pt	-3.35	2.83	-3.35	2.83	
Ag/Pt	-3.83	1.00	-3.83	1.00	

- 1. Kitchin, J.R., Norskov, J.K., Barteau, M.A., and Chen, J.G., *Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals.* Journal of Chemical Physics, 2004. **120**(21): p. 10240-10246.
- 2. Mun, B.S., Watanabe, M., Rossi, M., Stamenkovic, V., Markovic, N.M., and Ross, P.N., A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. Journal of Chemical Physics, 2005. **123**(20).
- 3. Duan, Z. and Wang, G., A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Physical Chemistry Chemical Physics, 2011. **13**(45): p. 20178-20187.

Figure S3: Benzene adsorption energies at the most stable sites of various alloys as function of the d-band center of all Pt atoms in the top layer. Surface alloys: non-segregated, Pt₃-hcp⁰ sites (closed black diamonds) and antisegregated, bri- M^{30} sites (open black diamonds). Bulk alloys: non-segregated Pt₃-hcp⁰ (closed circles) and antisegregated bri-M-Pt₃/fcc-PtM₂ sites (open circles). Pt(111) reference (cross). Linear fit to all these points is $E_{ads} = -191.5(\epsilon_d - E_f) - 565.4$; R² = 0.52.