Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Steger et al., SUPPORTING INFORMATION

Systematic evaluation of fluorescence correlation spectroscopy data analysis on the nanosecond time scale

Katrin Steger¹, Stefan Bollmann¹, Frank Noé², Sören Doose¹*

¹⁾ Department of Biotechnology & Biophysics, Biozentrum, Julius-Maximilians-University Würzburg, Am Hubland, 97075 Würzburg, Germany. ²⁾ Research Center Matheon, FU Berlin, Arnimallee 6, 14159 Berlin, Germany.

Corresponding Author

* Email: soeren.doose@uni-wuerzburg.de

Supporting Information

This material contains six figures S1-S6 with data as described in the figure captions and discussed in more detail within the main text.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2013

Steger et al., SUPPORTING INFORMATION

Figure S1:

Fig. S1: Noise amplitudes c(p) determined from a standard FCS sample as function of excitation power p. The data was recorded at 20°C for 15 minutes per data curve. The grey line is a data fit of the function $c(p)=a*p^m$ with $a=(0.005\pm0.001) \text{ s}^{1/2}$ and $m=-0.77\pm0.05$.

Figure S2:

(next page)

Fig. S2: Fit parameter distributions for the fitting results on simulated data sets as described in the main text. (A) Exemplary data curve with noise of $c=6x10^{-6} s^{1/2}$ overlaid with a function fitted by the LM algorithm as implemented in Mathematica. (B) Fit parameter distributions showing correlations between the two amplitudes A and R (closed squares) as generated from fitting 100 simulated FCS curves in each data set. Four data sets are displayed for data simulated with a noise amplitude of $c=6x10^{-6} s^{1/2}$ or $c=15x10^{-6} s^{1/2}$, A=-2, R=1, k_{AB}=0.4, and k_{rot}=0.1 (or 0.05 or 0.025). No correlation appears between A_{AB} and corresponding χ^2 values (open circles). N_{false} indicates the number of unreasonable data fits with A_{AB}<-3 (from a total of 100 data fits).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Steger et al., SUPPORTING INFORMATION

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2013

Steger et al., SUPPORTING INFORMATION

Figure S3:

Fig. S3: Dynamical fingerprints determined for experimental FCS data of a mixture of freely diffusing fluorophore MR121 (~1 nM) and Trp (10 mM) in PBS buffer with 60% sucrose as presented in Fig. 1. Dynamical fingerprints were determined three times from an identical FCS curve with 10^5 , 10^7 , or 10^9 iterations (from left to right). The insets show the likelihood for the corresponding series of iteration steps.

Figure S4:

Fig. S4: Dynamical fingerprints generated for simulated FCS data. Data was simulated using the model function Eq. 1 overlaid with noise following Eq. 2 with a noise amplitude $c=9x10^{-6} s^{1/2}$. Here the starting value for the antibunching time constant was varied (10^{-6} ms for black, $9x10^{-7}$ ms for cyan, $8x10^{-7}$ ms for green, $7x10^{-7}$ ms for red, $6x10^{-7}$ ms for pink, $5x10^{-7}$ ms for blue) while the relaxation time constants were kept constant in all simulations at $\tau_{ab}=10^{-6}$ ms, $\tau_{rel}=10^{-5}$ ms, $\tau_{isc}=3x10^{-4}$ ms (indicated by black lines in the graph). The inset shows all fitted and the simulated data curve.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2013

Steger et al., SUPPORTING INFORMATION

Fig. S5: Dynamical fingerprints generated for simulated FCS data with a rotational correlation time constant approaching the antibunching time scale. Data was simulated using the model function Eq. 1 overlaid with noise following Eq. 2 with a noise amplitude $c=9x10^{-6} s^{1/2}$. The relaxation time of the rotational diffusion correlation decay was varied from 10^{-5} (top) to $5x10^{-6}$ (bottom) while the relaxation time constants for the antibunching signature and for the decay on larger times was kept constant at 10^{-6} ms and $3x10^{-4}$ ms, respectively (all indicated by vertical lines in the graphs). The three fingerprints were determined with a slight variation of the antibunching relaxation time starting value ($1x10^{-6}$ for black; $8x10^{-7}$ for red, $6x10^{-7}$ for blue).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is O The Owner Societies 2013

Steger et al., SUPPORTING INFORMATION

Figure S6:

Fig. S6: Dynamical fingerprints determined for experimental FCS data that was recorded for mixtures of freely diffusing fluorophore ATTO655 (~1 nM) and Trp (10 mM) in PBS buffer with various concentrations of sucrose (as indicated in the figure) at 20°C. The fingerprints reveal the same components as shown in Fig. 4 for MR121/Trp with a small additional decay component that mixes with the previous decays and effectively broadens the estimated fingerprint peaks.