Supporting information

Stability Issues in Pd-based Catalysts: The Role of Surface Pt in Improving the Stability and Oxygen Reduction Reaction (ORR) Activity

R. K. Singh, R. Rahul, M. Neergat¹

Department of Energy Science and Engineering, Indian Institute of Technology Bombay (IITB), Powai, Mumbai, India–400076

Synthesis of Pd nanoparticles (control-experiment)

We synthesized Pd nanoparticles (without hydrogen) using L-ascorbic acid as a reducing agent, *i.e.*, Pd seed prepared without hydrogen-containing reducing agent such as NaBH₄. For a typical synthesis of Pd (without hydrogen), L-ascorbic acid (60 mg) was dissolved in water and it was heated to 80°C. Meanwhile, an aqueous solution of Pd²⁺ (57 mg K₂PdCl₄ in 3 ml water) was added drop-wise to the above solution. Then the mixture was heated for 3 h at ~80°C. The asprepared Pd nanoparticles were supported on carbon (Vulcan XC-72) to get 20 wt% precious metal loading on the carbon-support. The carbon-supported Pd nanoparticles synthesized asmentioned above was treated with 0.1 mM K₂PtCl₄ (Pt²⁺) solution to deposit Pt on the surface of Pd (*i.e.*, Pt/Pd (without hydrogen)). The Pt/Pd catalyst was synthesized following the Cu deposition method reported in the literature.¹³

Figs. S1 and **S2** show the cyclic voltammograms (CVs) and oxygen reduction reaction (ORR) voltammograms of carbon-supported Pd (without hydrogen), Pt/Pd (without hydrogen), and Pt/Pd (synthesized by Cu deposition) in 0.1 M HClO₄ solution. The Pt/Pd (without hydrogen) shows features similar to that of Pd (without hydrogen) and their ORR voltammograms are almost comparable. On the other hand, synthesis of Pt/Pd by Cu deposition results in a better

coverage of Pt on Pd. The CV features of Pt/Pd (synthesized by Cu deposition) are similar to that of Pt and the half-wave potential of ORR is shifted positively by ~85 mV when compared to that of Pd (without hydrogen); ORR voltammogram of Pt/Pd (synthesized by Cu deposition) almost overlaps with that of standard Pt. These observations suggest that Pt-deposition is not happening on Pd (without hydrogen) surface by the galvanic displacement of Pd by Pt. This may be due to the negligible difference in their redox potentials (PdCl₄^{2–}/Pd (0.591 *vs.* reversible hydrogen electrode (RHE)) and PtCl₄^{2–}/Pt (0.775 *vs.* RHE)). The surface hydrogen atoms or Cu atoms on Pd-H and Pd-Cu, respectively, play an important role in reducing Pt²⁺ ions and in depositing Pt on Pd.

Fig. S1 Cyclic voltammograms (CVs) of Pd (without hydrogen), Pt/Pd (without hydrogen), and Pt/Pd (synthesized by Cu deposition) catalysts recorded in argon-saturated 0.1 M HClO₄ solution at a scan rate of 20 mV s⁻¹.

Fig. S2 Oxygen reduction voltammograms of Pd (without hydrogen), Pt/Pd (without hydrogen), and Pt/Pd (synthesized by Cu deposition) catalysts recorded in oxygen-saturated 0.1 M HClO₄ with 1600 rpm at a scan rate of 20 mV s⁻¹.

Fig. S3 TEM images of (a) Pt/Pd and (b) Pt/Pd₃Co. Inset to Figs. S3a and S3b shows EDS line scan of Pt/Pd (Pd (red) and Pt (cyan)) and Pt/Pd₃Co (Pd (red), Pt (green), and Co (blue)), respectively.

Fig. S4 Cyclic voltammograms of Pd and Pd₃Co catalysts after 100 cycles recorded in argonsaturated 0.1 M HClO₄ solution at a scan rate of 20 mV s⁻¹.

Fig. S5 Cyclic voltammograms of (a) Pt/Pd and (b) Pt/Pd₃Co (initial and after 500 cycles) recorded in argon-saturated 0.1 M HClO₄ solution. Insets to Fig. S5a and S5b show the ORR voltammograms of Pt/Pd and Pt/Pd₃Co catalysts, respectively.

Fig. S6 Cu stripping voltammograms of Pt, Pd, Pt/Pd, Pd₃Co, and Pt/Pd₃Co recorded in argonsaturated 12 mM CuSO₄ solution (0.1 M HClO₄ as a supporting electrolyte) at a scan rate of 10 mV s⁻¹. The dotted black and red lines represent the peak positions of Pd and Pt, respectively.

Table S1 Inter-planar spacing (d₁₁₁) of Pd, Pd₃Co, Pt/Pd, and Pt/Pd₃Co catalysts calculated from the X-ray diffraction (XRD) patterns.

Catalyst	d ₁₁₁ (nm)
Pd	0.2257
Pd ₃ Co	0.2280
Pt/Pd	0.2255
Pt/Pd ₃ Co	0.2274

Table S2 Particle size of Pd, Pd₃Co, Pt/Pd, and Pt/Pd₃Co catalysts estimated from the {220} reflection of the X-ray diffraction pattern and from TEM.

Catalyst	XRD (nm)	TEM (nm)
Pd	5	~5
Pd ₃ Co	3	~3
Pt/Pd	5	~5
Pt/Pd ₃ Co	3	~3

Table S3a EDS analysis of Pt/Pd₃Co catalyst.

Element	Atomic %
Со	22
Pd	67
Pt	11

Table S3b EDS analysis of Pt/Pd catalyst.

Element	Atomic %
Pd	86
Pt	14

Particle size (nm)	Total atoms	Surface atoms	Dispersion (%)
2.3	440	284	64
3	965	478	49
4	2287	852	37
5.25	5173	1468	28
6	7722	1916	24
10	35751	5324	15
15	120662	11988	10
20	286014	21312	7.5

Table S4 Dispersion of Pd estimated using hard sphere model for different particle sizes.

Calculation of Pt:Pd ratio from dispersion (Table S4) and H_{des} charge

For Pd₃Co

 Pd_3Co loading on 0.196 cm² of the disk electrode = 3 µg (or 15 µg cm⁻² of 20 wt% Pd_3Co/C)

Pd loading on the disk electrode = $2.53 \mu g$ (Pd:Co is 3:1 molar ratio)

The moles of Pd atoms in 2.53 µg of the catalyst = $\frac{2.53 \times 10^{-6} \text{g}}{106.42 \text{ g/mole}} = 2.37 \times 10^{-8} \text{mole}$

The total number of Pd atoms = 2.37×10^{-8} (mole) $\times 6.023 \times 10^{23}$ (atoms/mole) = 14.2×10^{15}

Dispersion using hard sphere model with 3 nm particle size = 0.49

The total number of surface Pd atoms with 3 nm particle size = $14.2 \times 10^{15} \times 0.49 = 6.95 \times 10^{15}$

So, the Pd (surface) : Pd (bulk) = 6.95×10^{15} : 14.2×10^{15} = 1:2.04

<u>1:2.04 (Pt:Pd) is maximum ratio possible (with Pd_3Co) if all the surface Pd atoms are metallic</u> with 3 nm particle size. This assumes Pt is deposited on all Pd surface atoms.

Thus, 1:4.08 is Pt:Pd ratio possible for half-a-monolayer coverage of Pt on Pd (with Pd₃Co).

 H_{des} charge (after correcting for double layer and bulk hydrogen evolution) = 0.650 mC

Number of active Pd sites on $Pd_3Co/C = 0.650 \text{ mC}/1.6 \times 10^{-19} = 4.06 \times 10^{15} \text{ Pd}$ atoms

(electronic charge in Coulomb = 1.6×10^{-19} C)

From the H_{upd} charge the number of surface Pd atoms = 4.06×10^{15} Pd atoms.

Number of Pt^{2+} that can be reduced with Pd-H (surface) = $(4.06 \times 10^{15}/2)$ atoms

= 2.03×10^{15} (since two Pd-H is required to reduce one Pt²⁺).

So, the ratio of Pt:Pd with $Pd_3Co = (2.03 \times 10^{15})/(14.2 \times 10^{15}) = ~ 1:6.99$

The above ratio is close to the composition obtained from EDS, ICP, and EDS line scan ~1:6 (in Pd_3Co). But, we get 1:4.08 from geometric considerations (hard sphere model), since it considers all Pd as metallic.

But, only 65% of the surface Pd is metallic (from XPS), and if we correct theoretical value (1:4.06) calculated from geometric considerations (with 0.65) (*i.e.*, 1×0.65 :4.08 = 1:6.27). This is almost close to Pt:Pd obtained from H_{des} (1:6.99).

<u>For Pd</u>

The atomic weight of Pd =106.42 g/mole.

The moles of Pd atoms in 3 µg of the catalyst $=\frac{3 \times 10^{-6} \text{g}}{106.42 \text{ g/mole}} = 2.81 \times 10^{-8}$ mole The total number of Pd atoms 2.81×10^{-8} mole $\times 6.023 \times 10^{23} = 16.92 \times 10^{15}$ Dispersion using hard sphere model with 4 nm particle size = 0.37Number of surface atoms for a 4 nm particle $= 16.92 \times 10^{15} \times 0.37 = 6.26 \times 10^{15}$ So, the Pd (surface) : Pd (bulk) $= 6.26 \times 10^{15} : 16.92 \times 10^{15} = 1:2.70$ *1:2.70 (Pt:Pd) is the maximum ratio possible (with Pd) if all the surface Pd atoms are metallic with 4 nm particle size. This assumes Pt is deposited on all Pd surface atoms. Thus, 1:5.40 is Pt:Pd ratio possible for half-a-monolayer coverage of Pt on Pd (with Pd).* H_{des} charge (after correcting for double layer and bulk hydrogen evolution) = 0.310 mC Number of active Pd sites on Pd = 0.310 mC/1.6 $\times 10^{-19}$ (electronic charge in Coulomb)

$= 1.937 \times 10^{15}$ Pd atoms

Number of Pt^{2+} that can be reduced with Pd-H (surface) = (1.937 × 10¹⁵/2) atoms (since two Pd-H is required to reduce one Pt^{2+}) = 0.968 × 10¹⁵.

So, the ratio of Pt:Pd with $Pd = (0.968 \times 10^{15})/(16.92 \times 10^{15}) = \sim 1:17.47$

<u>Pt:Pd ratio of 1:17.47 obtained from H_{upd} charge is significantly lower than the experimental</u> composition (1:7 obtained from EDS, ICP, and EDS line scan).

In Pd case, the Pt:Pd ratio calculated from the geometric considerations (hard sphere model) is 1:5.40, since it considers all Pd as metallic.

Thus, the number of active Pd surface atoms estimated from the H_{des} charge is an underestimation because Pd is oxidizing in the H_{upd} region itself.

If we presume ~50 % Pd is oxidizing in the H_{upd} region itself (Pd₃Co:Pd ESA ratio is 2:1), and if we correct Pt:Pd ratio obtained from H_{des} for this, (i.e., 1/0.5:17.47), then the Pt:Pd ratio is 1:8.73.

But, only 65% of the surface Pd is metallic (from XPS), and if we correct theoretical value (1:5.40) calculated from geometric considerations (with 0.65) (*i.e.*, 1×0.65 :5.40 = 1:8.30). This is almost close to Pt:Pd ratio obtained from H_{des} (1:8.73).

Sample	Species	Binding Energy (eV)	Relative Intensity (%)
Pt/Pd	Pd ⁰ (metallic)	335.31	66
	Pd^{2+} (PdO)	336.20	34
Pt/Pd ₃ Co	Pd ⁰ (metallic)	335.24	64
	Pd^{2+} (PdO)	335.92	36

Table S5a Summary of the fitting results for the Pd 3d XPS spectra of Pt/Pd and Pt/Pd₃Co.

Table S5b Summary of the fitting results for	r the Pt 4f XPS spectra of Pt/Pd	and Pt/Pd ₃ Co.
--	----------------------------------	----------------------------

Sample	Species	Binding Energy (eV)	Relative Intensity
Pt/Pd	Pt ⁰ (metallic)	71.25	65
	Pt^{2+} (PtO)	72.47	21
	Pt^{4+} (PtO ₂)	74.01	14
Pt/Pd ₃ Co	Pt ⁰ (metallic)	71.29	63
	Pt^{2+} (PtO)	72.30	22
	Pt^{4+} (PtO ₂)	73.75	15