SUPPLEMENT

Chirality-dependent balance between hydrogen bonding and London dispersion in isolated (\pm) -1-indanol clusters

Jonas Altnöder^a, Aude Bouchet^{b,c}, Juhyon J. Lee^a, Katharina E. Otto^a, Martin A. Suhm^{a,*}, Anne Zehnacker-Rentien^{b,c,*} a) Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany;

b) Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud, France;
c) CLUPS (Centre Laser de l'Université Paris Sud/LUMAT FR 2764), Univ Paris-Sud, Orsay, F-91405, France

*corresponding authors (msuhm@gwdg.de, anne.zehnacker-rentien@u-psud.fr)

S 1: Raman jet spectra of enantiopure 1-indanol (sample temperature T, nozzle temperature $100 \,^{\circ}\text{C}$) in helium with and without deliberately added water. Some important water monomer bands are marked with vertical dashed lines. The pure water spectrum (sample/nozzle temperature $10/120 \,^{\circ}\text{C}$) is scaled to similar water content as the mixed ones.

S 2: Raman jet spectra of enantiopure 1-indanol with and without deliberately added water; same spectra as in S 1, vertical scale optimized for interpreting small bands. Some important water monomer bands are marked with vertical dashed lines.

structure	dispersion type	B97D-opt	B3LYPD3-opt	Δ
eq	E_{D2}	-64.1	-64.0	-0.2
	E_{D3}	-39.3	-39.5	0.1
ax	E_{D2}	-63.7	-63.6	-0.1
	E_{D3}	-39.2	-39.3	0.1
HetOΠ	E_{D2}	-187.0	-182.8	-4.2
	E_{D3}	-125.1	-123.4	-1.7
HomΠΠ	E_{D2}	-192.1	-184.4	-7.7
	E_{D3}	-126.8	-123.7	-3.1
HomOΠ	E_{D2}	-190.2	-185.6	-4.6
	E_{D3}	-126.7	-124.8	-2.0

S 3: Analysis of absolute dispersion corrections as a function of the correction type (E_{D2}, E_{D3}) and the molecule/dimer structure (B97D-optimized or B3LYP-D3-optimized) in kJ/mol.