Electronic Supplementary Information (ESI)

On Structure and Bonding of Lanthanoid Trifluorides LnF₃ (Ln = La to Lu)

Wei Xu,¹ Wen-Xin Ji,¹ Yi-Xiang Qiu,¹ W.H.Eugen Schwarz^{2,3,†} and Shu-Guang Wang^{1,3,*}

¹ School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China ² Department of Chemistry, Tsinghua University, 100084 Beijing, China

³ Department of Chemistry, University of Siegen, 57068 Siegen, Germany

Contents

1)	TABLE S1. Valence Basis Functions for Ln Atoms: exponents provided by ADF and here added.	p. 2
2)	TABLE S2. Valence MO bands of HoF ₃ (C _{3v} , SR): Alpha orbital energies ε_i (in eV), orbital symmetries, occupation numbers, and % contributions of Ho and F valence AOs.	p. 3
3)	TABLE S3. Geometry optimization of LnF ₃ (Ln = La to Lu) at scalar (SR) and spin-orbit coupled (SOC) relativistic ECP-DFT levels. Bond lengths R_{LnX} in pm, bond angles θ_{XLnX} for C _{3v} in degree (for D _{3h} , i.e. θ = 120°).	p. 4
4)	TABLE S4. Vibrational harmonic normal frequencies (in cm ⁻¹) of LnF3 at the SR level.	p. 5
5)	TABLE S5. Change of geometry of LnF3 upon basis set extentsion (see table S1): Ln-F bond length <i>R</i> in pm, F-Ln-F bond angle θ in degree.	p. 6
6)	FIGURE S1. Valence MO envelop diagram of GdF3 (D_{3h} , SR, PW91-DF) showing from which Gd-4f AO the MOs of Gd(4f)-F(2p) mixed type originate.	p. 7

	Dravidad 6a	Drowidad Gr	Dravidad ar
Ln	riovided os	Provided op	erovided of
	exponents	exponent,	added(\rightarrow) 51
		here split	exponent "
La	1.95,1.25, 0.82	1.25 →1.60, 1.035	÷ → 1.65
Ce	1.95, 1.25, 0.82	1.25 →1.60, 1.035	÷ → 1.65
Pr	2.00, 1.30, 0.86	1.30 →1.65, 1.08	÷ → 1.65
Nd	2.00, 1.30, 0.87	1.30 →1.65, 1.085	÷ → 1.65
Pm	2.10, 1.35, 0.88	1.35 →1.725, 1.115	÷ → 1.65
Sm	2.15, 1.35, 0.89	1.35 →1.75, 1.12	÷ → 1.65
Eu	2.15, 1.40, 0.90	1.40 →1.775, 1.15	÷ → 1.65
Gd	2.20, 1.40, 0.92	1.40 →1.80, 1.16	÷ → 1.65
Tb	2.25, 1.40, 0.92	1.40 →1.825, 1.16	1.65
Dy	2.30, 1.45, 0.94	1.45 →1.875, 1.18	1.65
Но	2.30, 1.45, 0.95	1.45 →1.875, 1.20	1.65
Er	2.35, 1.50, 0.96	1.45 →1.90, 1.23	1.65
Tm	2.40, 1.50, 0.97	1.45 →1.95, 1.235	1.65
Yb	2.40, 1.50, 0.97	1.45 →1.95, 1.235	1.65
Lu	2.45, 1.55, 1.00	1.55 →2.00, 1.275	1.65

TABLE S1. Valence Basis Functions for Ln Atoms:

ADF-provided ^{a)} and here added exponents.

^{a)} E. Van Lenthe and E. J. Baerends; *J. Comput. Chem.* **2003**, *24*, 1142; [65]

Ei	Sym.	Occ.	Ho(4f)	Ho(5d)	Ho(6s)	Ho(5p)	F(2s)	F(2p)
-8.56	2A ₂	1	33					<u>67</u>
-8.74	7E	2	16			2		<u>82</u>
-8.87	7A1	1	42	1	1	1		55
-9.02	6A1	1	40	2	1	1		56
-9.16	6 E	2	38	5				57
-9.56	5E	2	32	7				61
-9.90	5A1	1	<u>79</u>	1				20
-9.93	1A ₂	1	<u>69</u>					31
-9.93	4E	2	<u>70</u>	1				29
-10.09	3E	2	45	4		1	1	49
-10.46	4A ₁	1	38	2	1		1	58

TABLE S2. Valence MO bands of HoF₃ (C_{3v}, SR): Alpha orbital energies ε_i (in eV), orbital symmetries, occupation numbers, and % contributions ^{a)} of Ho and F valence AOs.

^{a)} MOs dominated by Ho or by F AOs are bold face underlined

T.e.	Sym-	S	R	SOC		a)	0 a)	$R_{\rm Exp}^{\rm b)}$	Δ b)
Ln	metry	R	θ	R	θ	Recom	$\theta_{\rm Recom}$	R_{e}, R_{g}	$\theta_{\rm Exp}$
La	C_{3v}	211.7	113.3	211.7	113.3	207.7	109.0		
	D_{3h}	212.8		212.5					
Ce	C_{3v}	209.0	110.3	208.9	111.8	206.8	109.5		
	D_{3h}	210.6		210.3					
Pr	C_{3v}	208.8	114.6	208.2	113.8	205.8	110.0	205.6(5),209.1(3)	105.(2)
	D_{3h}	209.4		209.1					
Nd	C_{3v}	207.6	113.6	207.0	113.6	204.9	110.5		
	D_{3h}	208.3		207.9					
Pm	C_{3v}	207.0	115.8	206.3	115.0	203.9	111.0		
	D_{3h}	207.5		206.8					
Sm	C_{3v}	206.6	116.2	205.6	115.7	202.9	111.5		
	D_{3h}	207.1		206.0					
Eu	C_{3v}	206.1	116.7	204.8	116.2	202.0	112.0		
~ 1	D _{3h}	206.6		206.6	1160	• • • •			
Gd	C_{3v}	204.1	116.4	204.1	116.8	201.0	112.5	201.6(6),205.3(3)	110.(2)
	D _{3h}	204.4		204.4		• • • •			
Tb	C_{3v}	202.7	114.1	203.4	117.4	200.1	113.0		
D	D_{3h}	203.3	117 1	203.6	117 (100.1	110 5		
Dy	C_{3v}	202.3	11/.1	202.9	11/.6	199.1	113.5		
п.	D_{3h}	202.4	1175	203.1	1177	100.1	114.0	100 (1) 200 7(2)	100(2)
HO	C_{3v}	201.3	117.5	202.2	11/./	198.1	114.0	198.(1),200.7(3)	108.(3)
Er	D_{3h}	201.0	1177	202.4	120.0	107.2	1145		
EI	C_{3v}	200.8	11/./	202.4	120.0	197.2	114.3		
Tm	D_{3h}	201.1	118.0	202.0	118 /	196.2	115.0		
1 111	D_{3v}	200.5	110.0	201.4	110.4	170.2	115.0		
Vh	D_{3h}	200.0	1199	201.4	117 5	195 3	115 5		
10	D_{2h}	200.5	117.7	201.5	11/.0	170.0	110.0		
Lu	C_{2y}	197 7	1174	197.6	1174	194 3	116 0		
	D _{3h}	197.8		197.6					

TABLE S3. Geometry optimization of LnF₃ (Ln = La to Lu) at scalar (SR) and spin-orbit coupled (SOC) relativistic ECP-DFT levels. Bond lengths R_{LnX} in pm, bond angles θ_{XLnX} for C_{3v} in degree (for D_{3h} θ = 120°).

^{a)} Recommended Bond Lengths from Table 5 in Kovács and Konings' review.² ^{b)} Experimental bond lengths R_e for the lowest point of potential energy surface and R_g for the distance averaged over molecular vibrations and bond angles from Kovács and Konings' review,² and Hargittai.³

71	A1	Е	A1	Е
Z.Ln	invers	bend	stretch,sym	stretch,asym
57.La	74	114	527	498
58.Ce	92	113	537	501
59.Pr	63	116	527	510
60.Nd	60	115	532	517
61.Pm	49	116	527	516
62.Sm	43	116	521	512
63.Eu	39	118	511	505
64.Gd	48	126	549	533
65.Tb	77	129	555	534
66.Dy	45	128	552	538
67.Ho	41	129	552	541
68.Er	38	129	545	539
69.Tm	41	131	532	531
70.Yb	21	128	515	521
71.Lu	49	141	571	567

Table S4. Vibrational harmonic normal frequencies (in cm⁻¹) of LnF3 at the SR level.

T m		ADF-	extended	Rec. ^{a)}	Exp. ^{b)}
LII		TZ2P	basis		R _e ,R _g
Lo	R	212.0	211.7	207.7	
La	θ	113.4	113.3	109.0	
Ca	R	209.2	209.0	206.8	
Ce	θ	110.4	110.3	110.0	
D.	R	208.4	208.8	205.8	205.6(5),209.1(3)
ΡI	θ	112.8	114.6	110.0	
NJ	R	207.4	207.6	204.9	
ING	θ	113.7	113.6	110.5	
Dree	R	206.5	207.0	203.9	
Pm	θ	114.2	115.8	111.0	
Sm	R	206.4	206.6	202.9	
5111	θ	115.5	116.2	111.5	
En	R	205.8	206.1	202.0	
Еu	θ	116.1	116.7	112.0	
Cł	R	203.6	204.1	201.0	201.6(6),205.3(3)
Gu	θ	115.3	116.4	112.5	
ть	R	202.2	202.7	200.1	
10	θ	113.2	114.1	113.0	
D	R	201.9	202.3	199.1	
Dy	θ	116.0	117.1	113.5	
IIa	R	201.1	201.3	198.1	198.(1),200.7(3)
по	θ	116.3	117.5	114.0	
E.	R	200.8	200.8	197.2	
Eſ	θ	118.1	117.7	114.5	
т	R	200.3	200.5	196.2	
1 111	θ	118.4	118.0	115.0	
Vh	R	200.3	200.5	195.3	
Ϋ́Ο	θ	118.4	119.9	115.5	
Ι	R	197.7	197.7	194.3	
Lu	θ	118.5	117.5	116.0	

Table S5. Change of geometry of LnF3 upon basis set extentsion (table S1): Ln-F bond length R in pm, F-Ln-F bond angle θ in degree.

^{a)} Recommended Bond Lengths from Table 5 in Kovács and Konings' review.² ^{b)} Experimental bond lengths R_e for the lowest point of potential energy surface and R_g for the distance averaged over molecular vibrations from Kovács and Konings' review,² and Hargittai.³

FIGURE S1. Valence MO envelop diagram of GdF₃ (D_{3h}, SR, PW91-DF) showing from which Gd-4f AO the MOs of Gd(4f)-F(2p) mixed type originate.

