Supporting Information

For

Morphology Dependent Oxygen Reduction Activity of

Titanium Carbide: Bulk vs. Nanowires

Vankayala Kiran,^a Srinivasu Kancharlapalli,^band Srinivasan Sampath^{a,*}

Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore -560012

Contents

- **1. STEM-EDS mapping of TiC-NW**
- 2. Electrical properties of TiC-NW
- 3. SEM images of hydrothermally treated TiC (a) in 0.5 M HCl and (b) in NaCl (pH~7)
- 4. N₂ adsorption-desorption isotherms
- 5. Deconvoluted O-1s spectrum of TiC-NW
- 6. Raman spectra of (a) bulk TiC particles and (b) 1D TiC-NW
- 7. Effect of peak current on square root of scan rate for ORR using TiC-NW
- 8. Effect of loading ORR kinetic parameters
- 9. Methanol tolerance studies

STEM-EDS mapping of TiC-NW

Figure S1. STEM (a) B F image of TiC-NW and corresponding X-ray maps (b) C-map, (c) Ti-map and (d) O- map.

Electrical properties of TiC-NW

To depict the electrical properties, preliminary studies are carried out on as-obtained TiC-NW. Devices are fabricated on Si/SiO₂ substrate using dielectrophoresis. Device was fabricated as follows. Pre-defined patterns are fabricated onto pre cleaned Si/SiO₂ substrates using optical lithography with Au (50nm) as contact material deposited on selective regions using RF sputtering, followed by lift-off procedure. Individual and well-separated TiC-NW dispersed in dichloro ethane are aligned in respective regions using AC dielectrophoresis with V_{p-p} of 10 V and a frequency of 5 MHz. AC dielectrophoresis result in the alignment of TiC-NW between fingers of the device (figure S2). *I-V* characteristics represent a linear response to voltage suggesting typical ohmic behaviour (figure S3). Effect of gate voltage on *I-V* characteristics of TiC-NW displayed no effect of gating, suggesting metallic nature of TiC-NW.

Figure S2. SEM images of TiC-NW based device after dielectrophoresis

Figure S3. I-V characteristics of TiC-NW based device. (a) Plot of I_{DS} - V_{DS} at V_{GS} = 0 V; (b) plot of I_{DS} - V_{GS} at V_{DS} = 0.1 V. (DS represents source-drain and GS represents gate-source). Inset shows configuration of the device used.

Figure S4. SEM images of hydrothermally treated TiC in (a) 0.5 M HCl and (b) NaCl (pH~7)

N2 adsorption-desorption isotherms

Figure S5. Nitrogen adsorption-desorption isotherms corresponding to (a) TiC-NW and (b) bulk TiC particles

Deconvoluted O-1s spectrum of TiC-NW

Figure S6. Deconvoluted O-1s spectrum of TiC-NW

The deconvoluted O-1s region of TiC-NW shown in figure S5 consists of two peaks located at binding energy (B.E) values 529.9 eV and 532.2 eV. The appearance of former peak reveals the presence of titanium oxides 1,2 whereas the latter peak is attributed to the

presence of adsorbed water.² It has been reported that the latter peak can be eliminated by Ar⁺ ion etching.

Raman spectrum of TiC-NW

Figure S7. Raman spectra of (a) bulk TiC particles and (b) 1D TiC-NW

Figure S8. Variation of forward (black) and reverse (red) currents as a function of square root of scan rate using TiC-NW. Electrolyte used is 0.001 M $[Ru(NH_3)_6]^{3+}$ in 0.5 M phosphate buffer (pH~7)

Effect of loading of TiC-NW on ORR

Figure S9. Effect of loading on kinetic current density and number electrons transferred during ORR on TiC-NW modified electrode.

Figure S10. I-t transients recorded at -0.35 V vs. MMO in O₂ saturated 0.5 M KOH on (a) TiC-NW and (b) 40 wt% Pt/C. The addition of methanol is shown in figure. Loading of Pt/C used is 44 μ g/cm²

References

1. Robinson, K. S.; Sherwood, P. M. A. Surf. Interface Anal. 1984, 6, 261.

2. Bertoncello, R.; Casagrande, A.; Casarin, M.; Glisenti, A.; Lanzoni, E.; Mirenghi, L.; Tondello, E. *Surf. Interface Anal.* **1992**, *18*, 525.