Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/materials

Supporting Information

Synthesis and Characterization of the Crystal Structure and Magnetic Properties of the Hydroxyfluorides $MnF_{2-x}(OH)_x$ (x ~ 0.8)

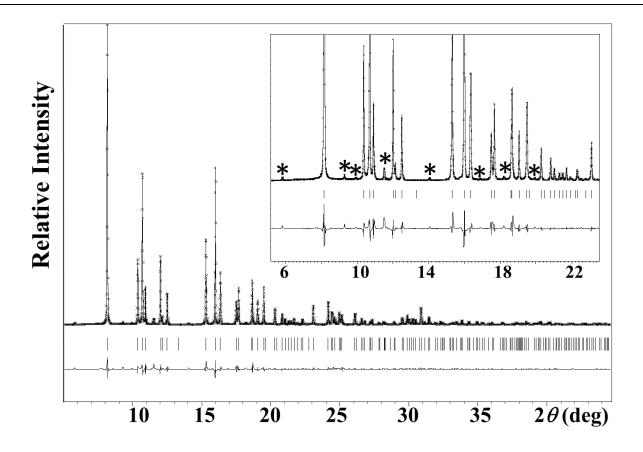
Hamdi Ben Yahia^{a,*}, Masahiro Shikano^{a,*}, Hironori Kobayashi^a, Maxim Avdeev^b, Samuel Liu^c, Chris D. Ling^c

s Received (in XXX, XXX) Xth XXXXXXXX 2011, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

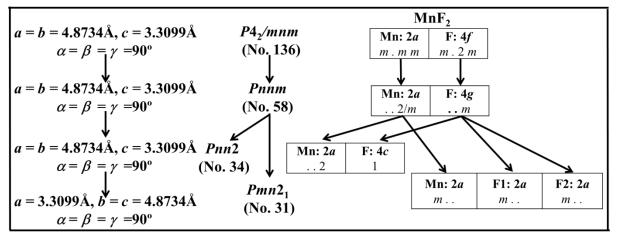
Electronic Supplementary Information (ESI)

¹⁰ Table S1. Crystal structural parameters for MnF_{1.20(1)}(OH)_{0.80(1)} at 3 K based on Rietveld refinement

against NPD data. Space group *Pnn*2 (No 34), a = 4.71143(10) Å, b = 5.24377(11) Å, c = 3.24834(6)


Å, V = 80.252(3) Å³.

Atom	Wyck.	x	У	Z	Occupancy	$B_{\rm iso},{\rm \AA}^2$
Mn	$2a^*$	0	0	0	1	0.21(6)
O/F	4 <i>c</i>	0.2511(6)	0.1533(3)	0.504(5)	0.399(8)/0.601(8)	0.49(3)
Н	4 <i>c</i>	0.4250(11)	0.0287(13)	0.543(5)	0.399(8)	0.49(3)


* z(Mn) was kept at 0 to fix the unit cell origin as all the sites in the Pnn2 space group have variable z-

coordinates

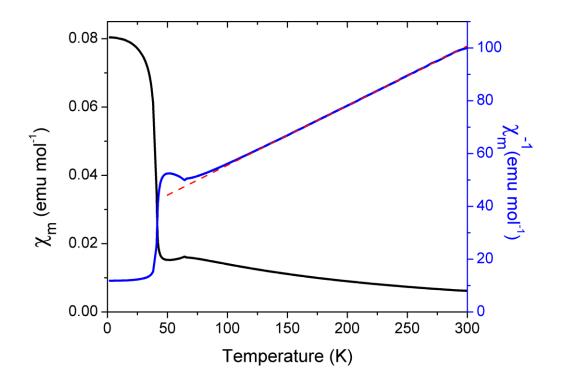
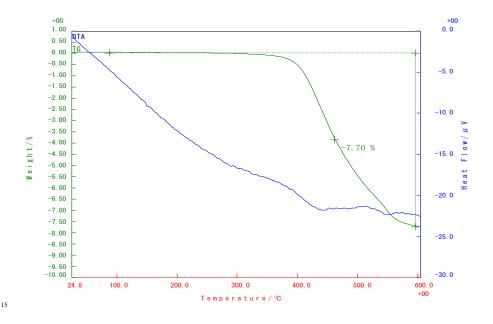

15

Figure S1. Final observed, calculated and difference plots for synchrotron X-ray powder diffraction refinement ($\lambda = 0.5001$ Å) of MnF_{2-x}(OH)_x (x ~ 0.8). The asterisk in the inset corresponds to Mn₃O₄.

⁵ **Figure S2.** Group-subgroup transformation from tetragonal *P*4₂/*mnm* to orthorhombic *Pnnm*, *Pnn*2, *and Pmn*2₁, for MnF₂ structure.

Figure S3. Magnetic susceptibility χ_m and the corresponding ${\chi_m}^{-1}$ as a function of temperature under 0.1 T field for MnF_{1.20(1)}(OH)_{0.80(1)}. The signature of the AFM transition can be seen at ~70 K. The ⁵ anomaly at ~40 K is due to a ferrimagnetic transition in the minor impurity phase Mn₃O₄. Red dashed line shows the Curie-Weiss fit done in the range 200-300K and yielding Θ =-146(1) K and the effective moment 5.95(1) μ_B consistent with the spin-only value for S=5/2 Mn²⁺.

Thermal analyses


10

Thermal analyses (TG-DTA-MS) were carried out on the $MnF_{2-x}(OH)_x$ (x ~ 0.8) sample using a Rigaku TG-DTA-PIMS410/s instrument. The measurements were done between 25 °C and 600 °C at a ⁵ heating rate of 5 °C/min. The experiment was performed in alumina crucible under helium atmosphere. We clearly observe 7.7% of weight loss. Based on the mass spectrometer analysis, this loss corresponds to water molecules (18g/mol). Furthermore, the examination using X-ray diffraction of the powder collected after the thermal analysis shows a decomposition of the sample to a mixture of MnO and MnF₂. Therefore, the decomposition mechanism is as follow:

$$2MnF_{2-x}(OH)_x = (2-x) MnF_2 + x MnO + x H_2O$$
 (eq. 1)

If we consider y the % of H₂O weight loss then: $y = \frac{x \times M(H2O)}{2 \times [M(Mn) + (2 - x) \times M(F) + x \times M(OH)]} \times 100$ (eq. 2) We then deduce from eq. 2: $x = \frac{M(MnF2)}{\left(\frac{50}{y}\right) \times [M(H2O)] + [M(F) - M(OH)]}$ (eq. 3)

For y = 7.7%, x would be equal to 0.782. This is in very good agreement with the composition x = 0.8 determined from Rietveld refinement.

Figure S4. DT and TG thermal analyses for $MnF_{2-x}(OH)_x$ (x ~ 0.8) sample.