Supplementary information to accompany:

Comparing molecular photofragmentation dynamics in the gas and liquid phases

Stephanie J. Harris,^a Daniel Murdock,^a Yuyuan Zhang,^{b+} Thomas A.A. Oliver,^{a++}
Michael P. Grubb,^a Andrew J. Orr-Ewing,^a Gregory M. Greetham,^c Ian P. Clark,^c
Michael Towrie,^c Stephen E. Bradforth ^b and Michael N.R. Ashfold.^a

^a School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
^b Department of Chemistry, University of Southern California, Los Angeles, CA
90089, USA

^c Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities

Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK

Figure S1

UV/visible absorption spectra of dilute solutions of allylphenylether (APE), phenol (PhOH), *p*-methylthioanisole (*p*-MePhSMe) and *p*-methylthiophenol (*p*-MePhSH) in cyclohexane.

Figure S2

UV/visible absorption spectra of *p*-MePhSMe in the vapour phase and in a dilute solution in cyclohexane and acetonitrile.

Figure S3

Plot showing the time resolved emission (centred at ~300 nm) following 267 nm photoexcitation of a 10 mM solution of phenol in cyclohexane obtained via time-correlated single photon counting. The red-trace is a best-fit convolution of the instrument response function and an exponential decay with time constant $\tau = 2.16$ ns.