Co-processing CH_4 and Oxygenates on Mo/HZSM-5: 2. CH_4/CO_2 and $CH_4/HCOOH$ Mixtures

Jeremy Bedard, Do-Young Hong, and Aditya Bhan

Supplementary Information

The tabulated results presented in Table S.1 show the observed product distribution and conversion for co-processing CO_2/CH_4 , CH_3COOH/CH_4 , and $HCOOH/CH_4$ mixtures at 950 K. All data reported were recorded at 11 ks time-on-stream.

Table S.1: CH₄ conversion and product carbon selectivity for DHA reactions over Mo/H-ZSM-5 catalyst at 950 K, CH₄ flow rate 12.0 cm³ min⁻¹, CH₄:Ar = 9:1, catalyst loading 1 g with Mo:Al_f = 0.25, and time-on-stream 11 ks.

Oxygenate	CO ₂	AA	FA
O*/CH ₄ (/10 ⁻⁵)	1.8	1.5	1.7
CH_4 conversion (%) ^a	8.6	6.3	8.2
Selectivity (%) ^b			
СО	62.0	54.1	41.2
C_2H_4	1.0	1.3	1.5
C_2H_6	1.1	1.2	1.6
C ₆ H ₆	22.6	29.5	36.7
C ₇ H ₈	1.0	1.4	1.7
$C_{10}H_{8}$	11.1	11.6	15.6
C_{10}^{+}	1.2	0.9	1.5
^a $Conv_{CH_4} = \frac{F_{CH_4}^{Inlet} - F_{CH_4}^{Outlet}}{F_{CH_4}^{Inlet}}$ ^b %	$S_i = \frac{n_i * F_i}{\sum_i n_i * F_i}$		