Supplementary Information

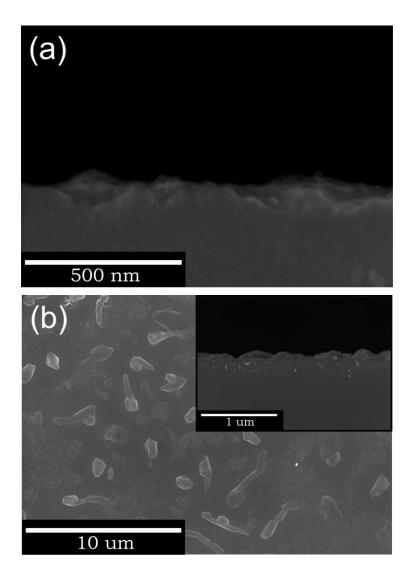
Table S1. Theoretical electrochemical equivalents of selected metal-air materials

Material	Density (g/cm ³)	Electrochem. Equiv. (Ah/cm ³)	Energy Density (kWh/L)	Specific Energy (kWh/kg)
				, U
Carbon	2.27	20.26	20.67	9.1
Silicon	2.33	8.89	14.23	6.11
Germanium	5.32	7.85	7.85	1.48
Zinc	7.1	5.82	9.31	1.31
Lithium	0.53	2.05	6.96	13.13

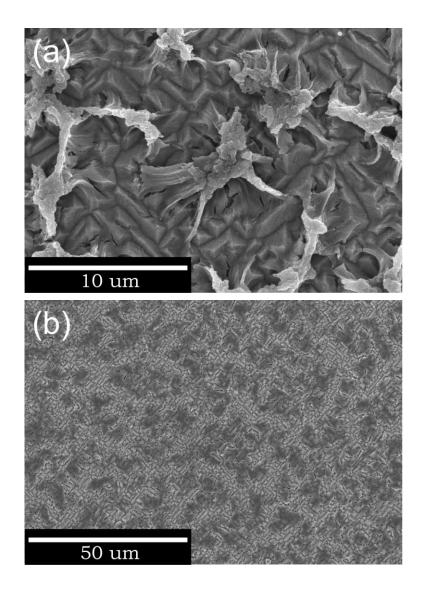
Condition: 20 C and 1 atm

* Free Energy: $\Delta G^{\circ} = -nFE^{\circ}$

** Theoretical Capacity (Coulombic)


: Theoretically 1 gram-equivalent weight of material will deliver **96,487** C or **26.8** Ah (Faraday).

(A gram-equivalent weight is the atomic weight of the active material in grams divided by the number of electrons involved in the reaction.)


*** Based on active a node (fuel electrode) only (O $_{\! \scriptscriptstyle 2}$ not included),

Reference:

Linden, TB Reddy, Handbook of Batteries, 4th ed., McGraw-Hill, New York, 2010

Fig. S1 (a) Cross-section SEM image of PGe showing non-uniform surface (40 wt. % HF, 1 mA/cm², 3 hr) and (b) Plain and cross-section SEM images of a highly electropolished Ge (5 wt. % HF, 100.0 mA/cm², 24 hr).

Fig. S2 SEM images of other porous Ge structures that can be formed in different etching conditions, (a) 48 wt. %, 0.5 mA/cm², 24 hr and (b) 40 wt. % HF, 0.5 mA/cm², 24 hr.

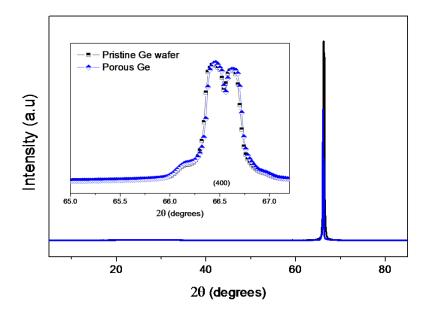
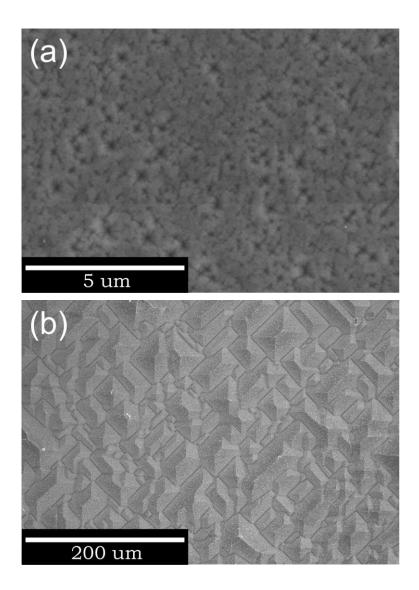
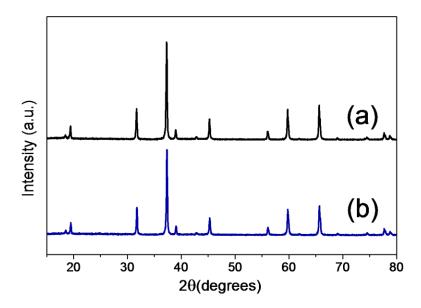




Fig. S3 X-ray diffractograms of pristine and etched Ge wafers.

Fig. S4 Post-galvanostatic discharge SEM images of the ordered PGe structures, (a) EE-PGe and (b) EE-ELE-PGe

Fig. S5 X-ray diffractograms of the gas diffusion electrode used in the Ge-air cell (a) before and (b) after the discharge.